
Module 6

Computer Architecture

5-1
PROCESSOR: DATA PATH AND CONTROL

The implementation of the processor is studied with respect to a
subset of the full instruction set: the core set (most common).

• Memory reference (lw and sw)
• Arithmetic-logical instructions (add, sub, and, or and slt).
• Branch and jump instructions (beq, j).

Guidelines: Make the common case fast
Simplicity and regularity

All instructions have this in common:

Use the content of the program counter as an address to the
memory, which returns the next instruction;

Read one or two registers (except j) using fields to select the
registers to be read.

Then, depending on the instruction type, actions can differ, but
they will all use the ALU (arithmetic-logicals, memory reference)
to calculate effective addresses.

Finally, the actions needed to complete the instruction differ.

• memory reference: loads read memory and write back register
file; stores write memory;

• arithmetic-logicals: write back to register file;
• branches: may change the content of the program counter,

depending on a comparison.

5-2
THE FLOW OF INFORMATION

(DATA PATH)

How information flows between functional units?: trace all
possible paths needed to implement any instructions (5.1)

5-3
RECALL ON LOGIC CIRCUITS

• Combinatorial: Outputs = F(Inputs)

• Sequential: Statei = S(Inputsi+1, Statei);
Outputsi = G(Inputsi , Statei).

• Edge triggered clock

(5.2)

(5.3)

(5.4)

• Buses

5-4
BUILDING BLOCKS

 Memory Program counter ALU

(5.5)

Put this together to implement the instruction fetch. (which
includes the automatic PC increment circuit).

(5.6)

5-5
 Registers ALU

(5.7)

Data path for R-Type instructions

(5.8)

5-6
 Memory sign-extension unit

(5.9)

Data path for load or store.

(5.10)

5-7
 Adder ALU Shift-left unit

Data path for a branch conditional.

(5.11)

5-8
COMPLETE DATA PATH

(5.14)

5-9
CONTROL

ALU control

ALU control input Function

000 And

001 Or

010 Add

110 Subtract

111 Set- less-than

ALU control as a function of Opcode and Function code.
(This must be viewed as an example, there is nothing general,
except the principle).

Two steps to take advantage of the structure:

• Create a two bit control signal call ALUop to distinguish
whether the ALU action is to be found in the Opcode, in the
function field or if it is a branch.

Instr. ALUop Instr. Function ALU action ALU

LW 35 00 load word XXXXXX add 010

SW 43 00 store word XXXXXX add 010

Br. equal 4 01 branch-equal XXXXXX subtract 110

R-Type 0 10 add 100000 add 010

R-Type 0 10 subtract 100010 subtract 110

R-Type 0 10 AND 100100 and 000

R-Type 0 10 OR 100101 o r 001

R-Type 0 10 set- less-than 101010 set- less-than 111

Administrator
Sticky Note
Tells weather function bits will be used or not

no possibility 11

00=add
01=substract
10=Function

5-10

Create truth tables:

ALUop Function code ALU control

00 XXXXXX 010

X1 XXXXXX 110

1X XX0000 010

1X XX0010 110

1X XX0100 000

1X XX0101 001

1X XX1010 111

Derive a circuit:

(5.18)

Administrator
Sticky Note
Generated by Operation code.

5-11
REST OF THE CONTROL

Look at the instruction formats again:

R-Type 0 r s r t r d shamt funct

3 1 - 2 6 2 5 - 2 1 2 0 - 1 6 1 5 - 1 1 1 0 - 6 5 - 0

LW/SW 35 or 43 r s r t address

3 1 - 2 6 2 5 - 2 1 2 0 - 1 6 1 5 - 0

Branch 4 r s r t address

3 1 - 2 6 2 5 - 2 1 2 0 - 1 6 1 5 - 0

All the fields are more or less at same place:

• Opcode, bits 31-26, call them Opcode.

• The read registers are in rs and rt for all cases except loads.

• The base register in always in 25-21

• The 16-bit offset (found in the address field) is always in 15-0.

• The destination register is in rt for loads but in rd for R-Types.
 A multiplexer is needed here to select rt or rd.

5-12

The data path with multiplexors, and nine control lines. (5.20)

Administrator
Sticky Note
0 = ALU
1= read

Administrator
Sticky Note
writre data as specified in the instruction

Administrator
Sticky Note
Selects btw PC+4 and Branch Target adress. Decision= branch true or false

Administrator
Sticky Note
What does the aLU needs to do??
ALU op = 2 bits
Physical commands coming out of the controller

In the instruction, R type: op code =0
Lw sw: ALU needs to do addition

control Alu.

Administrator
Sticky Note
instructinon decoded into parts

Administrator
Sticky Note
Function bits

5-13
NAMING AND FUNCTIONS

OF CONTROL LINES

Name Effect when deasserted Effect when asserted

MemRead None read data at specified
address

MemWrite None write data at specified
address

ALUSrc ALU input2 comes from
read port2 of register file

ALU input2 is
sign-extended offset

RegDst destination register
number found in rt

destination register number
found in rd

PCSrc PC = PC + 4 PC = PC + 4 + Offset * 4

MemtoReg write port of register file
from ALU output

write port of the register file
from the memory

SETTINGS

Instr . RegDst ALUSrc Memto
Reg

Reg
Wr i te

Mem
Read

Mem
Wri te

Branch ALUop

R-Type 1 0 0 1 0 0 0 10

l w 0 1 1 1 1 0 0 00

sw x 1 x 0 0 1 0 00

beq x 0 x 0 0 0 1 01

The settings are completely determined by the opcode.

Administrator
Sticky Note
Completry set by up code

Administrator
Sticky Note
No memory operation

Administrator
Sticky Note
10 means read from function bits

Administrator
Sticky Note
sw
rw is 0 because not writing
rdest dont mattter

5-14
DATA PATH WITH CONTROL LINES

(5.22)

Administrator
Sticky Note
0= no effect
1= read data at a particular adress

Administrator
Sticky Note
0=northing
1=write data at specific addess

Administrator
Sticky Note
0= second read portr

Compute adress..
1= comes from sifn extension

Administrator
Sticky Note
2 possibilities
decides if writing rt or rd

when doing arithmetic op, rs+rt=rd

Load: rt is a destination. Write register.

Administrator
Sticky Note
Decides if PC or Branch.
Evaluate branch condition
Test output of 0 to see if branch is taken
If so, lead PC with target

Administrator
Sticky Note
Output of data or result

Administrator
Sticky Note
When asserted, write data on data port on adress comming from adress register

5-15

EXAMPLE: AN R-TYPE
BROKEN DOWN IN TO 4 STEPS

1. FETCH (Units involved shaded) (5.24)

Administrator
Sticky Note
if beq and result if substraction in true, use 1 to mtxer and pick new branch adress. Make sure branch is taken.

Administrator
Sticky Note
Instruction fetched and Pc incrementer

Administrator
Sticky Note
adress

Administrator
Sticky Note
Values bypass memory

5-16
EXAMPLE: AN R-TYPE

BROKEN DOWN IN TO 4 STEPS
(Cont’d)

2. REGISTER READ (Units involved shaded) (5.25)

5-17
EXAMPLE: AN R-TYPE

BROKEN DOWN IN TO 4 STEPS
(Cont’d)

3. ALU OPERATION (Units involved shaded) (5.26)

5-18
EXAMPLE: AN R-TYPE

BROKEN DOWN IN TO 4 STEPS
(Cont’d)

4. RESULT WRITE (Units involved shaded) (5.27)

5-19
CONTROL FUNCTION

Returning to the synthesis of the control, we summarize the
control function with its truth table.

Inputs Outputs

Opcode RegDst ALUSrc Memto
Reg

Reg
Wr i te

Mem
Read

Mem
Wri te

Branch ALUOp1 ALUop0

000000 1 0 0 1 0 0 0 1 0

100011 0 1 1 1 1 0 0 0 0

101011 x 1 x 0 0 1 0 0 0

000100 x 0 x 0 0 0 1 0 1

and turn this into a circuit, using a PLA for example:

(5.31)

5-20
THE CASE OF THE JUMP

Jump 2 address
3 1 - 2 6 2 5 - 0

Like the branch, the lower 2 bits of the jumping address are
always zero (because we jump always on word boundaries). The
next 26 bits come from the instruction, and the upper 4 bits come
from the current PC. Thus the jump does not really reach the
entire 32 bit address space, but rather a sixteenth of it (which is
still a huge space).

One additional multiplexor is needed to select the source of the
new PC value and thus requires only one more control line. It is
asserted only when the opcode is 2.

Data Path extended to include the jump (5.33)

Administrator
Sticky Note
Offset is stored in words, not bites. So x4
with hard wired <<2, 2LSB=00

To get the 4 MSB for 32 bit number,
fill PC on top 4 bits

Administrator
Sticky Note
1/16 address space... 2^28, not 2^32

Administrator
Sticky Note
Function.

|-----------------|
2 controllers

Administrator
Sticky Note
longest is lw

Administrator
Sticky Note
Chop up data path in parts, assigned euqal clock cycle

Administrator
Sticky Note
Temp registers added:
Instruction register(IR): Saves instruction
Memory data register (MDR)
A and B reg. Operand values from reg file
ALU out register.

Administrator
Sticky Note
SEE BOOK PP SLIDES

Administrator
Sticky Note
Advantages of multicycle:

less hardware. Can go back and reuse same ALU, same memory, and so on. No need for duplication

Faster. Shorter instructions can be processed faster. Not have to wait for longest instruction.

Administrator
Sticky Note
instruction register keeps instruction through out process.

Administrator
Sticky Note
Registers A and B not shown here. Hold info between clock cycles

Administrator
Sticky Note
Reg $ALU out. Not shown here. See book.

Administrator
Sticky Note
$MEM DATA register
saves data from lw btw clock pulses

Administrator
Sticky Note
ALU out.
R type instruction. &|+->><<. Take result back to register

Administrator
Sticky Note
ALU computes address (lw, sw)

Administrator
Sticky Note
Thicker line is more than 1 bit.(bus)
B=R type, Branch
4=PC+4
Sign extend Offset:lw, sw
shiftlest2:branch: comouting address

Administrator
Sticky Note
00=add
01=sub
10=R type. look at function bit

Administrator
Sticky Note
lw and R type. Selects rd, rt

Administrator
Sticky Note
1st thing. Unconditional.
Need
1-Go to instruction register and take value of PC
2-PC=PC+4
Done in parrallel.

Affected control signals
IRD=0 (Instruction or data)
IRWrite= 1 (write to register)

Instruction chopped up in parts
ALUSrcA=0
ALUSrcB=01
ALUop=add=00

Administrator
Sticky Note
First thing. We have instruction peices chopped up. 1st field is always needed.
Read1=nescessary
Read2= to be ready if needed
$A = rs
$B = rt (If needed)

Use the ALU to prepare for branch (PC+sign exted<<2) In case. Don't have tu, but ALU is not doing anything anyways
Saves it to ALU out. Garbage if dont need.
To do this:
ALU out= PC+4(prepared in previous step)+offset<<
ALUsrcA=0
ALUsrcB=3 (11)
ALUop=00 (force and add)

Administrator
Sticky Note
Memory reference:
ALU out=A+sign exten+IR offset)
Not a branch, overwright ALUout
ALUscrA=1
ALUscrB=2
Aluopp: 00(add)

Administrator
Sticky Note
If RType
ALUout= A+B
ALUA=1
ALUB=00
ALUopp=10(look at function bits)

Administrator
Sticky Note
if a=b, then PC =ALU out
Load PC with previously calculated address
ALUsrcA=1
AluscrB=00
ALuop=01(sub)
Put the answer in 0 line
Branch is pretty much done

Administrator
Sticky Note
Already computed address. Do the work (sw, lw)
If load, ALU out has an address
go to memory. get data and store in $memory data
Next cycle, put in register
MDR=mem[aluout]
mem read, I/D=1

in sw:
mem[aluout]=B
mem wright=1
I/D=1

Administrator
Sticky Note
Did some math. Answer in in ALU out
Reg[IR[rd])=Aluout
Register dest=1 (=write register)
register write=1
mem to reg=0 (to let in ALU out)

Administrator
Sticky Note
Rtype is done
sw is done

To finish up lw, left answer in MDR. Put it in register write

Administrator
Sticky Note
Only figure out the operation here. b4, everything is done in parallel, common to each ops

Benefit, dont have to wait for slower

Administrator
Sticky Note
3 source for PC
-ALU out: PC=PC+4
-Branch target address (ALU out)
-lower 26 bits, shift 4 (J)

3 input multiplexer upstream from PC
Controlled by PC Source

PC write condition: Decides if we want to unconditionnaly write (PC+4 and J)
Or conditional branch(Branch condition and ALU out=0; Tahen, so write to PC)

Administrator
Sticky Note
Sets all the Control MCC.

Administrator
Sticky Note
Jump: Offset (26 bit) Padded with 4 msb of address

Administrator
Sticky Note
Sequentional logic function

Set of input/output
Next state function-maos current state and inputs to new state... see wxtra)

Administrator
Sticky Note
Programming

Administrator
Sticky Note
Common for all instructions

Administrator
Sticky Note
Unconditionnal compute BranchTargetA and put in ALU out

Administrator
Sticky Note
PC+4, unconditionnal

Administrator
Sticky Note
Remember control registers. Dont actually need to hold values as specified here. Value is stored in special$ not mentionned here.

Administrator
Sticky Note
Actually 7. See book appendix

6 control data path (which conmtrol line is asserted)
7th selects next mictoinstruction

Administrator
Sticky Note
DNE because of register ALU out

Administrator
Sticky Note
Multiplexer. Selects between
seq=State+1
Fetch= Load 0
Dispatch 1
Dispatch 2

MicroProgram Counter

MicroInstruction Memory

Mult iplexer

Instruction Register

Address
Select Logic

Disp.
Table

1

Disp.
Table

2

MIPS Multi-Cycle
Control ler

to datapath

+1

0000

