Module 6

Computer Architecture

-1
PROCESSOR: DATA PATH AND CONTROL

The implementation of the processor is studied with respect to a
subset of the full instruction set: the core set (most common).

* Memory reference (lw and sw)
» Arithmetic-logical instructions (add, sub, and, or and sit).
 Branch and jump instructions (beq, j).

Guidelines: Make the common case fast
Smplicity and regularity

All instructions have this in common:;

Use the content of the program counter as an address to the
memory, which returns the next instruction;

Read one or two registers (except j) using fields to select the
registers to be read.

Then, depending on the instruction type, actions can differ, but
they will al use the ALU (arithmetic-logicals, memory reference)
to calculate effective addresses.

Finally, the actions needed to complete the instruction differ.

* memory reference: loads read memory and write back register
file; stores write memory;

o arithmetic-logicals. write back to register file;

 branches: may change the content of the program counter,
depending on a comparison.

5-2
THE FLOW OF INFORMATION
(DATA PATH)

»| Data
Register #
Address Instruction —E Registers >ALU Address
Instruction Register #
memon T Data
e—>] Register # memory
»| Data

How information flows between functional units?: trace all
possible paths needed to implement any instructions (5.1)

RECALL ON LOGIC CIRCUITS

» Combinatorial: Outputs = F(Inputs)

e Sequential: Satg = JInputs+1, Sate);

Outputs =

 Edge triggered clock

State State
element Combinational logic element
1 2

G(Inputs , Sate).

Clock cycle —
(5.2)
State State
element Combinational logic element
1 2
T Write T Write
Clock cycle ——
(5.3)
| State Combinational logic
| element
(5.4)

* Buses

5-3

5-4
BUILDING BLOCKS

Memory Program counter ALU
. Instruction
address —
Instruction [Add Sum
Instruction Write
memory | —
(5.5)

Put this together to implement the instruction fetch. (which
includes the automatic PC increment circuit).

5 Add

4 e

Ll PC J |Read

address

Instruction |re———————

Instruction
memory

(5.6)

Registers

ALU

r
1

Register 4

—————
numbers

——

Read

register 1 Read

Read data 1

register 2
Registers
Write

register Read

Write data 2

|\
Data { —

data

> Data

(5.7)

Write

Data path for R-Type instructions

Instruction

(5.8)

Read
register 1

Read

register 2
Registers

Write

register

Write
data

Read

data 1

Read
data 2

5-5

ALU operation

ALU
> ALU result

Zero

BALU ALU

result

Memory
Write
: Read
address
Read
Wit data
. rite
address
Data
_ memory
. Write
data
Read
(5.9)

Data path for load or store.

Instruction

sign-extension unit

S

ALU AU

Sign
extend

Zero p—>

reSult je———

Read
| register 1 Read
Read data 1
register 2
Registers
Write
register Read
_| Write data 2
| data
16 2
\ Sign
N “lextend

Read
address

Write
address

Write
data

Read

data

Data
memory

(5.10)

S-7
Adder ALU Shift-left unit

—p -
Adder

> Sum >ALU Zero

Data path for a branch conditional.

PC + 4 from instruction datapath ==
Adder
> Sum Branch target
Read
Instruction register 1 Read
Read data 1
register 2
Registers >ALU Zero To branch

Write control logic
register Read
Write data 2
data

16 32

\ Sign

N “lextend

(5.11)

COMPLETE DATA PATH

PC

N

Add

Read

address

Instruction
memory

Instruction

(5.14)

Read
register 1 Read
Read data 1
register 2
Registers Read
Write data 2
register
Write
data
1
\ Sign
N lextend

» =

M
u
X
ALU
> Add result
Zero Read
ALU a1y address Read
ea
result data
Write
address
Data
memo
Write i
data

ALU control

CONTROL
ALU control input Function
000 And
001 Or
010 Add
110 Subtract
111 Set-less-than

5-9

ALU control as a function of Opcode and Function code.

(This must be viewed as an example, there is nothing general,
except the principle).

Two steps to take advantage of the structure:

» Create atwo bit control signal call ALUop to distinguish
whether the ALU action is to be found in the Opcode, in the
function field or if it is a branch.

Instr. At%j)p Instr. Function | ALU action ALU
LW 35 (00 load word XXXXXX | add 010
SW 43 |00 store word XXXXXX | add 010
Br. equal |4 |01 branch-equal | XXXXXX |subtract 110
R-Type |0 |10 add 100000 |add 010
R-Type |0 |10 subtract 100010 |subtract 110
R-Type |0 [10 AND 100100 |and 000
R-Type |0 (10 OR 100101 |or 001
R-Type (0 |10 set-less-than |101010 |set-less-than|111

Administrator
Sticky Note
Tells weather function bits will be used or not

no possibility 11

00=add
01=substract
10=Function

Create truth tables:
@
ALUop | Function code |ALU control
00 XXXXXX 010
X1 XXXXXX 110
1X XX0000 010
1X XX0010 110
1X XX0100 000
1X XX0101 001
1X XX1010 111

Derive acircuit;

F (5-0)

v

5-10

ALUOp
i | ALU control block
ALUOpPO
L
ALUOp1
Operation2
F3 *——
@
F2 ¢ Operation1
|
F1
N\ OperationO
. 4
FO -

(5.18)

» Operati

Administrator
Sticky Note
Generated by Operation code.

REST OF THE CONTROL

Look at the instruction formats again:

R-Type

LW/SW

Branch

All the fields are more or less at same place;

5-11

0 rs rt rd shamt funct
31-26 25-21 20-16 15-11 10-6 5-0
35 or 43 rs rt address
31-26 25-21 20-16 15-0
4 rs rt address
31-26 25-21 20-16 15-0

» Opcode, bits 31-26, call them Opcode.

* The read registers are in rs and rt for all cases except loads.

e The base register in awaysin 25-21

» The 16-bit offset (found in the address field) is aways in 15-0.

* The destination register isin rt for loads but in rd for R-Types.
A multiplexer is needed here to select rt or rd.

5-12

PC

Add

PCSrc

Read
address

Instruction
[31-0]
Instruction
memory

ALU
> Add o qutt

» xegez ©

MemWrite

L

RegWrite
]
Instruction [25-21] Read
register 1 Read
Instruction [20-16] Read data 1 ALUSre
register 2
0 .~ Registers Regq
M Write data 2 0
u register L
. X u
Instruction [15-11] 1 Write @ X
data 1
RegDst|
Instruction [15-0] {6 Sign 32 g
N lextend

Inst@[S—O]

[

ALUOp

Read
address

Read

data
Write
address

Data

wite oo
data

1

1
MemRead

MemtoReg

The data path with multiplexors, and nine control lines. (5.20)

Administrator
Sticky Note
0 = ALU
1= read

Administrator
Sticky Note
writre data as specified in the instruction

Administrator
Sticky Note
Selects btw PC+4 and Branch Target adress. Decision= branch true or false

Administrator
Sticky Note
What does the aLU needs to do??
ALU op = 2 bits
Physical commands coming out of the controller

In the instruction, R type: op code =0
Lw sw: ALU needs to do addition

control Alu.

Administrator
Sticky Note
instructinon decoded into parts

Administrator
Sticky Note
Function bits

5-13

NAMING AND FUNCTIONS
OF CONTROL LINES

Name Effect when deasserted | Effect when asserted
MemRead |None read data at specified
address
MemWrite |None write data at specified
address
ALUSrc ALU input2 comesfrom |ALU input2is
read port2 of register file |sign-extended offset
RegDst destination register destination register number
number found in rt found in rd
PCSrc PC=PC+4 PC=PC+4 + Offsat * 4
MemtoReg |write port of register file |write port of the register file
from ALU output from the memory
SETTI NGSEJ
Instr. RegDst | ALUSrc | Memto | Reg Mem | Mem Branch ALUop
Reg Write Reag:erite =
=0, o
R-Type 1 0 0 1 0 0 0 10
|w 0 1 1 1 1 0 0 00
sw&E)| «x 1 X 0 0o | 1 0 00
beq X 0 X 0 0 0 1 01

The settings are completely determined by the opcode.

Administrator
Sticky Note
Completry set by up code

Administrator
Sticky Note
No memory operation

Administrator
Sticky Note
10 means read from function bits

Administrator
Sticky Note
sw
rw is 0 because not writing
rdest dont mattter

DATA PATH WITH CONTROL LINES

5-14

Add

Read
address

Instruction
memory

Instruction
[31-0]

Instruction [31-26]

Branch

ALU

Add result

\ MemRead

MemtoReg

ALUOp

Instruction [25-21)

MemWrite

ALUSIp——

RegW\ —

Read

Instruction [20-16]

register 1 Read

Read data 1

Instruction {15-11]

chgo

Instruction [15-0]

register 2
Registers Read

Write
register

data 2

Write
data

ALU Ay

result

—

16
\ Sign |\

N lextend|

Instruction [5-0]

Read
address

Write
address

Write
data

Read
data

ata
memory

O,:gl—\

(5.22)

Administrator
Sticky Note
0= no effect
1= read data at a particular adress

Administrator
Sticky Note
0=northing
1=write data at specific addess

Administrator
Sticky Note
0= second read portr

Compute adress..
1= comes from sifn extension

Administrator
Sticky Note
2 possibilities
decides if writing rt or rd

when doing arithmetic op, rs+rt=rd

Load: rt is a destination. Write register.

Administrator
Sticky Note
Decides if PC or Branch.
Evaluate branch condition
Test output of 0 to see if branch is taken
If so, lead PC with target

Administrator
Sticky Note
Output of data or result

Administrator
Sticky Note
When asserted, write data on data port on adress comming from adress register

5-15

EXAMPLE: AN R-TYPE
BROKEN DOWN IN TO 4 STEPS

0

——— M

] e u

X

2 Add | ;

Add |

B] left 2) i
) :
nStruction e S i o

Instruction
[31-0]

Instruction
memory

1. FETCH (Units involved shaded) (5.24)

Administrator
Sticky Note
if beq and result if substraction in true, use 1 to mtxer and pick new branch adress. Make sure branch is taken.

Administrator
Sticky Note
Instruction fetched and Pc incrementer

Administrator
Sticky Note
adress

Administrator
Sticky Note
Values bypass memory

EXAMPLE: AN R-TYPE

BROKEN DOWN IN TO 4 STEPS
(Cont’d)

5-16

e

{ Shift

-—owz

M
E

\5 Add

g

Add
4
Instruction [31-26] ALK
Control
Instruction [25-21]
Read
addre: .
Instruction [20-16]
Instruction I o1
[31-0] ™
Instruction | u
memory |} Instruction [15-11] 1“
P—————————————
Instruction [15-0]

-

-

=

2. REGISTER READ (Units involved shaded) (5.25)

EXAMPLE: AN R-TYPE
BROKEN DOWN IN TO 4 STEPS

(Cont’d)

Read
address

Instruction
memory

Instruction
[31-0]

Instruction [25-21]

ntrol

Instruction [31-26] /_\ ALUOp
C[U

Instruction [20-16]

L.

Instruction [15-11]

3. ALU OPERATION (Units involved shaded) (5.26)

Instruction [15-0]

register 1 Read
Read data 1
register 2
Reglsters poaq
Write data 2
regist
rite
data

S-17

5-18
EXAMPLE: AN R-TYPE
BROKEN DOWN IN TO 4 STEPS
(Cont’d)

- xe® ©

Add
R
4
Instruction [31-26]
Instruction [25-21] Read
Read i
address regsterd Read
Instruction [20-16] Read data 1
_ register 2
Inst;g?i%q Registers Read R
Wite ghaad Read
Instruction register e
memory Instruction [15-11] Write
1 Data
dat.
a memaory
Instruction [15-0] :'\I:.‘ Q \/

\tiey\

Instruction [5-0]

4. RESULT WRITE (Units involved shaded) (5.27)

CONTROL FUNCTION

5-19

Returning to the synthesis of the control, we summarize the
control function with its truth table.

Inputs Outputs
Opcode |RegDst |ALUSrc |Memto |Reg Mem | Mem Branch [ALUOpl | ALUopO
Reg Write | Read [Write
000000 1 0 0 1 0 0 0 1 0
100011 0 1 1 1 1 0 0 0 0
101011 X 1 X 0 0 1 0 0 0
000100 X 0 X 0 0 0 1 0 1

and turn thisinto a circuit, using a PLA for example:

Inputs

Op5 —¢—

el

Op4 —19—

*

Op3 . 4

*

®

Op2 $

Op1

OpO

R-format

iw

SW

1

4.-7

(5.31)

Outputs
RegDst

ALUSrc
MemtoReg
RegWrite
MemRead
MemWrite

r——— Branch

ALUOp1

&——— ALUOpPO

THE CASE OF THE JUMP

5-20

Jump

2

address

=

31-26

25-0

Like the branch, the lower 2 bits of the jumping address are
always zero (because we jump always on word boundaries). The
next 26 bits come from the instruction, and the upper 4 bits come

from the
entire 32

rrent PC. Thus the jump does not really reach the

address space, but rather a sixteenth of it (which is
still a huge space).

One additional multiplexor is needed to select the source of the
new PC value and thus requires only one more control line. It is
asserted only when the opcode is 2.

O xez H

Instruction [25-0] ®\ Jump address [31-0]
~ \left 2/
26 28 0
PC+4 [31-28] T
x
e
Add
4
| | nstriction (25-21] Read | |
Read | register 1 I
Fe address | - . . Read . |
i Instruction [20-16] Read data 1
register 2
IHSIELSI?'—%] | 0 Registers Roaq
M Write data 2 Address
Instruction u register
Ll Instruction [15-11] X =
Instr 1[15-1 Write
Pr————p —e|
2 data
5 IO —— —‘ Write
= data
Instruction [15-0} I\G Sign ‘i" / \ .

Read 1
data
]
u
Data x |
memory |—- 0

N lextend| |'l ALU 'I_ \
]\:funt:nrl
\ |
\ /

Instruction [5-0]

Data Path extended to include the jump (5.33)

Administrator
Sticky Note
Offset is stored in words, not bites. So x4
with hard wired <<2, 2LSB=00

To get the 4 MSB for 32 bit number,
fill PC on top 4 bits

Administrator
Sticky Note
1/16 address space... 2^28, not 2^32

Control scheme for the Single Cycle Datapath

P Code Field ! ! ﬁLUDPFiEldE] !

z1|z0|29|2527| 26| 25l24] 23| 22|21 |20l 19|18 71 6|1 5|va 131 2| 1)1a] 2 | g 2 e | S| 4|22 |1 |a

mstruction word

hd

Y

Cambinational
Logic

Combinational ALTOF [OF1,0F0]
Logic

Wl}:nl::-'-'_...;'." fl:n\lh g deddwan T1-0] ,-'l
:ﬂ'l;:::j.';';. = .
2T 711
\ T : i e

Administrator
Sticky Note
Function.

|-----------------|
2 controllers

5-21
IMPLEMENTATION

Single clock cycle implementation is not practical because the
cycle time is limited by the time req=yed by the longest of all
instructions measured in terms of its critical path (the longest is
sw, the shortest is j).

We break down each instruction into steps and assign equal clock
cycle time to each step. To achieve this we

e use a single memory for instructions and data;

e Save the instruction once read into a reg(;%er so the memory
can be reused later to read or store data;

e Use a single ALU to perform all arithmetic operations so the
same 1s reused at each stage;

e Multiplex the ALU inputs for all needed combinations.

rH- Resd ° Read
address : register 1

Memery . Read Read Zero
Write g register 2 data 1
address Registers AU
Write Read st
Write register data 2
r m m. & —— -
deta x

Multistage Data Path (5.35)

Administrator
Sticky Note
longest is lw

Administrator
Sticky Note
Chop up data path in parts, assigned euqal clock cycle

Administrator
Sticky Note
Temp registers added:
Instruction register(IR): Saves instruction
Memory data register (MDR)
A and B reg. Operand values from reg file
ALU out register.

Administrator
Sticky Note
SEE BOOK PP SLIDES

5-22
CONTROL OVERVIEWS

lor> Memfead MemWmte iRWrite RegDst Regwrite ALUSatA
l l | _ | .)
Reso 25-21] regeszer 1 I .
E e s I D Y =
B30 ppucion il o] 0
= — | PR e - =
; |
S _ ﬁg okes
i el | e fe)ell@
Memonee Instruction
[5-0)
wion
(5.36)
Name Effect when deasserted Effect when asserted
MemRead |None read data at specified address
MemWrite | None write data at specified address
ALUSelA | ALU inputl comes PC ALU inputl is register rs
RegDst destination register 1is rt destination register is rd
RegWrite [None Write register file
MemtoReg | ALU to reg. file write port | memory to reg. file write port
lorD PC to memory address ALU to memory address
IRWrite | None write IR from memory
ALUSelB |00]| ALU input2 from register number rt
01 | ALU input2 is constant 4
10 | ALU input?2 is sign-extended offset
11 | ALU input?2 is sign-extended offset * 4
ALUop 00 | ALU performs an add
01 | ALU performs a subtract
10 | function code determines the ALU operation

Administrator
Sticky Note
Advantages of multicycle:

less hardware. Can go back and reuse same ALU, same memory, and so on. No need for duplication

Faster. Shorter instructions can be processed faster. Not have to wait for longest instruction.

Administrator
Sticky Note
instruction register keeps instruction through out process.

Administrator
Sticky Note
Registers A and B not shown here. Hold info between clock cycles

Administrator
Sticky Note
Reg $ALU out. Not shown here. See book.

Administrator
Sticky Note
$MEM DATA register
saves data from lw btw clock pulses

Administrator
Sticky Note
ALU out.
R type instruction. &|+->><<. Take result back to register

Administrator
Sticky Note
ALU computes address (lw, sw)

Administrator
Sticky Note
Thicker line is more than 1 bit.(bus)
B=R type, Branch
4=PC+4
Sign extend Offset:lw, sw
shiftlest2:branch: comouting address

Administrator
Sticky Note
00=add
01=sub
10=R type. look at function bit

Administrator
Sticky Note
lw and R type. Selects rd, rt

5-23
INSTRUCTION STEPS

We try to balance each step so each clock cycle is well used. All
operation in series must occur in separate clock cycles.
Operations in parallel can be done within one clock cycle.

EJ

1. Instruction fetch =

IR = Memory[PC]
PC=PC +4

Control signals: (IRWrite, lorD, ALUSelB, ALUSelA, ALUop)

Note - Need some more control for the PC.

2. Instruction Decode and register fetch™

A Register[IR[rs]]
B Register{IR[rt]]
Target = PC + (sign-extend (IR[address] << 2)

This step is to prepare for later stages. Work is useful for the
majority of instructions.

Control signals: (ALUSeIB, ALUSelA)

Note - Need a new register: Target

Administrator
Sticky Note
1st thing. Unconditional.
Need
1-Go to instruction register and take value of PC
2-PC=PC+4
Done in parrallel.

Affected control signals
IRD=0 (Instruction or data)
IRWrite= 1 (write to register)

Instruction chopped up in parts
ALUSrcA=0
ALUSrcB=01
ALUop=add=00

Administrator
Sticky Note
First thing. We have instruction peices chopped up. 1st field is always needed.
Read1=nescessary
Read2= to be ready if needed
$A = rs
$B = rt (If needed)

Use the ALU to prepare for branch (PC+sign exted<<2) In case. Don't have tu, but ALU is not doing anything anyways
Saves it to ALU out. Garbage if dont need.
To do this:
ALU out= PC+4(prepared in previous step)+offset<<
ALUsrcA=0
ALUsrcB=3 (11)
ALUop=00 (force and add)

5-24

3. Exe(%ion, memory add%]ss calculation, or branch completion:

memory reference: ALUoutput=A+sign- extend(lR[address])

Control signals: (ALUSelA, ALUSelB, ALUOp) .

Arithmetic-logical: ALUoutput = A op B

Control signals: (ALUSelA, ALUSelB, ALUOp)

Branch: if (A == B) then PC = Target

Control signals: (ALUSelA, ALUSelB, ALUOp)

Note - Need more control for the PC

= S
4. Memory Access or R-Type completion
Load: memory-data = Memory[ALUoutput]

Control signals: (MemRead, lorD)

Store: Memory[ALUoutput] =

Control signals: (MemWrite, lorD)

R-Type: Register[iR[rd]] = ALUoutput

Control signals: (RegDst, RegWrite, MemtoReg)

Note - Keep values of ALUSelA, ALUSelB, ALUOp stable

Administrator
Sticky Note
Memory reference:
ALU out=A+sign exten+IR offset)
Not a branch, overwright ALUout
ALUscrA=1
ALUscrB=2
Aluopp: 00(add)

Administrator
Sticky Note
If RType
ALUout= A+B
ALUA=1
ALUB=00
ALUopp=10(look at function bits)

Administrator
Sticky Note
if a=b, then PC =ALU out
Load PC with previously calculated address
ALUsrcA=1
AluscrB=00
ALuop=01(sub)
Put the answer in 0 line
Branch is pretty much done

Administrator
Sticky Note
Already computed address. Do the work (sw, lw)
If load, ALU out has an address
go to memory. get data and store in $memory data
Next cycle, put in register
MDR=mem[aluout]
mem read, I/D=1

in sw:
mem[aluout]=B
mem wright=1
I/D=1

Administrator
Sticky Note
Did some math. Answer in in ALU out
Reg[IR[rd])=Aluout
Register dest=1 (=write register)
register write=1
mem to reg=0 (to let in ALU out)

5-25
5. Write/Sdck

Reg[IR[rt]] = memory-data
Control signals: (RegWrite, RegDst)

Note - this one is for loads only

Note - Keep values of ALUSelA, ALUSelB, ALUOp stable

SUMMARY

Action for Action for Action for
Steps R-Types load/stores Branches
instruction Fetch IR = Memory[PC]
Instruction Decode A = Register[IR[rs]]
Register Fetch B = Register[IR][rt]]

Target = PC + (sign-extend(IR[address]) << 2) -
Execution, addres@ ALUoutput = Aop B ALUoutput = if (A == B) then'
calculation A + sign-extend PC = Target
or branch completion (IR[address))
Memory access Register[IR[rd]} = memory-data =
or R-Type completion ALUoutput Memory[ALUoutput]
Write-back Register[IR[rt]] =
memory data

Administrator
Sticky Note
Rtype is done
sw is done

To finish up lw, left answer in MDR. Put it in register write

Administrator
Sticky Note
Only figure out the operation here. b4, everything is done in parallel, common to each ops

Benefit, dont have to wait for slower

- 5-26
To complete the data path, control is needed for the PC.
Including the jump instruction, the PC can take its source from:

e ALUoutput for incrementation.
e Target register for a branch.

e The lower 26 bits of the IR shifted by two and combined with
the upper 4 bits of the PC. |

This gives rise to a two bit control signal PCSource and a 3 input
multiplexor, and also a control signal TargetWrite.

To handle the branches we make the write to PC conditional to
the zero output of the ALU if the signal PCWriteCond is asserted.

Name Effect when | Effect when asserted
deasserted
PCWrite None PC written
PCWriteCond | None PC written if the zero output of the ALU
TargetWrite | None Target is written from ALU output
_ Effect of values
PCSource 00 | ALU output is sent to PC for writing
01 | Target is sent to PC for writing
10 | The jump address is sent to PC for writing

Administrator
Sticky Note
3 source for PC
-ALU out: PC=PC+4
-Branch target address (ALU out)
-lower 26 bits, shift 4 (J)

3 input multiplexer upstream from PC
Controlled by PC Source

PC write condition: Decides if we want to unconditionnaly write (PC+4 and J)
Or conditional branch(Branch condition and ALU out=0; Tahen, so write to PC)

(6€°¢)

PCWrite

FCWriteCond “CSource
o OCT%)LT.@M.M
MuamRead AL
e ey |ALUSoIB
INWrie ALUS
Mot rilo
Op st 0
18-0 | ~
Tanget iw
K
PC [31-28) 0 =N
gl 1y fonnm Jump
. ot 2 sddress
o" - nerustion
]
] [38-21)
Rosd Inowustion J Read ™
n | [een (31-261 1" | mewuorion Rginter 1 "
1 Memary 20-18) Read Read : Zero
Write register 2 dota 1 AV 4y
sddress Write Registorn result
Wrke register d:.:g 0
deta Writs L B r
data 2,
3
rJ 18
iall ol I 3 el | /™ | aw
o 2 [~ |controt “

LS

Administrator
Sticky Note
Sets all the Control MCC.

Administrator
Sticky Note
Jump: Offset (26 bit) Padded with 4 msb of address

5-28
DEFINING THE CONTROL

The control must specify the signals in each step and the next
step in sequence. It can be done two ways:

- o Finite state machine implemented with logic circuits; =
> e Microprogramming (which also is a finite state machine).EJ

A high level view is the finite state machine is:

Start
R 3
Instruction fetch
=
decode and register fetch
Memory access R-Type Branch Jump
instructions instructions instructions instruction
C | | I

By default, control signals not specified are left to O.

INSTRUCTION FETCH AND DECODE

3) Instruction decode/
Instruction fetch Register fetch

Memory reference FSM R-type FSM Branch FSM Jump FSM
- (Figure 5.43) (Figure 5.44) {(Figure 5.45) (Figure 5.46)

Administrator
Sticky Note
Sequentional logic function

Set of input/output
Next state function-maos current state and inputs to new state... see wxtra)

Administrator
Sticky Note
Programming

Administrator
Sticky Note
Common for all instructions

Administrator
Sticky Note
Unconditionnal compute BranchTargetA and put in ALU out

Administrator
Sticky Note
PC+4, unconditionnal

MEMORY REFERENCE

From state 1
(Op="LW') or (Op="SW")

Memory address computation

Memory
access

3
MemRead MemWrite
ALUSelA=1 AlLUSelA=1
© D=1 lorD=1
ALUSeiB=10 ALUSelB=10
ALUOp=00 ALUQp=00

~_ Tostate 0
" (Figure 5.42)

(3.43)

5-29

Administrator
Sticky Note
Remember control registers. Dont actually need to hold values as specified here. Value is stored in special$ not mentionned here.

5-30
R-TYPE, BRANCHES AND JUMP

From state 1
(Op=R-type)

Execution

From state 1

From state 1
!B 1
{Op="BEQ") (Op="JMP")

Branch completion Jump completi
etion

¢ R-type completion
To state 0 To state O
(Figure 5.42 o
32) (Figure 5.42)

ALUOp=10

To state O
{Figure 5.42)

ST

5.44 5.45 >-46

Memory address
computation
2
ALUSetA=1
AlLUSelB=10
ALUOp=00

)

‘L(OD-'LW‘
5

MemRead

AlUSelA=1
T lorD=1
ALUSelB=10

COMPLETE MACHINE

5-31

y Instruction fetch

MemRead

Instruction decode/
Register fetch

ALUSelA=0
llg$=0 o ALUSelA=0
IRWrite AlUSelB=11
Start ALUSelB=01 ALUQp=00
Targetwrite
) 0 N
LY o
oo’?‘w & 2
|\ \ { y
ol Branch \S) é Jump
) of Execution completion ~¢ completion
\Ov2 6 8
- ALUSelA=1
ALUSelA=1 ALUSelB=00
ALUSelB=00 ALUOp=01
ALUQp=10 PCWriteCond
PCSource=01

R-type completion

(5.47)

5-32
MICROPROGRAMMING

The complete control of a real-life machine may have hundreds of
states. Microprogramming allows the implementation in an
orderly fashion.

The idea is to define the control as a sequence of Uinstructions
assembled into a Uprogram running in a gmachine. Each
uinstruction defines the control lines assertion values. They are
specified symbolically and turned into binary values
automatically by a uassembler.

uinstruction; are broken down into fields which specify the
control lines by groups, plus one field which determines the
sequencing according to three methods:

1. Increment the address of the current [instruction to get the
next, this is indicated by the symbol Seq.

2. Branch to a labeled plinstruction, for example Label.

3. Select the next pinstruction from an external input. The name
of a dispatch table (ROM or PLLA) is indicated.

We have S%Jelds:

Field name Function

ALU control ALU operation during this clock

SRCH source of the first ALU operand

SRC2 | source of the second ALU operand

ALU dé=Ination |which register receives the ALU output
Memory Read/Write and what address

Memory Register |register read or written to or from memory
PCWrite control | how is the PC written

Sequencing next, branch or dispatch

Administrator
Sticky Note
Actually 7. See book appendix

6 control data path (which conmtrol line is asserted)
7th selects next mictoinstruction

Administrator
Sticky Note
DNE because of register ALU out

FIELD VALUES ~— -~~~ -

533

Field name Values Function specified
ALU Control Add Cause the ALU to add
Func code Use instruction’s function code to determine .
ALU control : ,
Subt Cause the ALU to subtract
SRC1 PC Use the PC as the first ALU input
xs Register rs is the first ALU input
SRC2 4 Use constant 4 as second ALU input
Extend Use the output of the sign extension unit as
second ALU input
Extshft Use the output of the shift by 2 unit as the
second ALU input
rt Register it is the second ALU input
ALU destination | Target ALU output is written into the register Target
rd ALU output is written into register rd
Memory Read PC read memory using the PC as address
Read ALU Read memory using the ALU output as address
Write ALU Write memory using the ALU output as address
Memory register | IR Data read from memory is written into the
instruction register '
Write rt Data read from memory is written into the
register rt
Read rt Data written into memory comes from register
rt
PCWrite control | ALU

Write the output of the ALU into the PC

Target-cond

if the Zero output of the ALU is active, write PC
with content of the register Target

jump address

Write the PC with the jump address from the
instruction

Sequencing

Seq

Choose the next microinstruction

Fetch

Go to the first microinstruction to begin a new
instruction

Dispatch i

Dispatch using the ROM specified by i (1 or 2)

5-34
WRITING A MICROPROGRAM

Label pinstructions we need to jump to, i.e. the first of each
instruction.

A blank means two possible things: | ’

e If the control lines control a state element such as a register, a
blank means that it remains unchanged;

e [f the control lines control a combinatorial circuit, it means we
don’t care.

All instructions start which a fetch:

Label ALU SRC1 SAC2 AU Memory | Memory | PCWiite | Sequencing
control destination register | control
Fetch Add PC _ 4 _ Read PC IR ALU Seq
Add PC Extsht Target Dispatchl |

To understand its effect, look at the groups of fields. For the first:

Fields Effect
ALU control, SRC1, SRC2 compute PC + 4
Memory and memory register Fetch instruction into IR
PCWrite control Causes the output of the ALU to be
written into the PC
Sequencing go to the next

For the second:

Fields [Effect
ALU control, SRC1, SRC2, ALU Store
destination PC + sign-extension(IR[offset]) << 2
into target
Sequencing Use dispatch table 1 to select the
next microinstruction

After the dispatch, the pprogram jumps to the place
corresponding to the instruction.

Ly ~

Loads and stores

5-35

Label AlLU SRCH SRC2 ALY Memory Memory | PCWrite | Sequencing
control destination register control

LWSW1 Add rs Extend Dispatch2

LW2 Add rs | Extend Read ALU Seq
Add rs | Extend Read ALU | Write rt Fetch

SW2 Add rs Extend Write ALU Read rt Fetch

Look at the group of fields in the first pinstruction

Fields

Effect

ALU control, SRC1, SRC2

Compute the memory address;
Register(rs) + sign-extend(IR[offset])

Sequencing :

Use the second dispatch table to
jump to either LW2 or SW2

The pinstruction labeled LW2:

Fields

Effect

ALU control, SRC1, SRC2

The output of the memory is still the
memory address

Memory Read memory using the ALU output as
the address
Sequencing Go to the next

The one after:;

Fields

T

Effect

ALU control, SRC1, SRC2

The output of the memory is still the
memory address

Memory and memory register

Read memory using the ALU output as
the address and write the result into
the register selected by rt

Sequencing

Go to the microinstruction Fetch

5-36

Note that since the field of the two pinstructions do not conflict.
They could be combined into one.

Label ALU | SRC1 | SRC2 | ALU dest | Memory Memory PCWrite | Sequencing
control ination register . control
LwW2 Add rs Extend Read ALU| Write rt Fetch

But the cycle time might have to be increase since both the

memory access and the register would have to occur in the same
pLinstruction.

The store pinstruction labeled SW2 operates similarly:

Fields

Effect

ALU control, SRC1, SRC2

The output of the memory is still the
memory address

Memory and memory register

Write memory using the ALU output
as the address the register selected
by rt has the value to write

Sequencing

Go to the microinstruction Fetch

The pprogram sequence for R-Type instruction has two

[instructions:
Label ALU control } SRC1 | SRC2 ALU Memory | Memory | PCWrite | Sequencing
destination register | control
Rformatl | Func code rs rt Seq
Func code rs rt rt Fetch

The two pinstructions perform these operations:

Fields

Etffect

ALU control, SRC1, SRC2,
ALU destination

result.

The first pinstruction causes the ALU to operate
on registers rs and rt according to the func
field. The second does the same but writes the

Sequencing

go to the next and then go to Fetch.

For branches, one plinstruction:

5-37

Label ALU | SRC1 | SRC2 ALU Memory | Memory PCWirite Sequencing
control destination register control ‘
BEQ1 Subt rs rt Target-cond Fetch
The asserted fields are:
Fields Effect

ALU control, SRC1, SRC2

The ALU rt from rs and generates the Zero output

PCWrite Control

Causes the PC to be written using the value in
Target, if the Zeroi output is true.

Sequencing

tO Fetch.

The jump pcode consists also of one pinstruction:

Label ALU | SRC1 | SRC2 ALU Memory | Memory | PCWrite control | Sequencing
control destination register

JUMP1 jump address Fetch

The asserted fields are:

Fields Effect
PCWrite Control Causes the PC to be written using the jump
field.
Segquencing go 10 Fetch.

g

5-38

COMPLETE pPROGRAM
Label ALlU | SRC1 | SRC2 ALY Memory | Memory | PCWrite | Sequencing
control destinatio register | control
n
& Fetch Add PC 2 Read PC iR ALU Seq
/ Add PC @xtsht Target Dispatchl
2 LWSW1 Add rs Extend Dispatch?2
LW2 Add rs Extend Read Seq
3 ALU
Add rs Extend Read Write Fetch
ALU rt
Sw2 Add rs Extend Write Read Fetch
ALU rt
Rformatl | Func rs Tt Seq
gode _
Func rs rt rt Fetch
code
JUMP1 Jump Fetch
? address
IMPLEMENTATION
COMNBVATIUE
COPBRIATORNL
ovtTRoL LOGIC ‘
Drva Pamh
COTRL LIvES
ovTDUTS
INPOTS
+ 4 SEQUENCING
S-A?E CouTROL

[

ADDRESS SCGLger
Lotie

-

OPCOdE

(5.52)

l‘§

Administrator
Sticky Note
Multiplexer. Selects between
seq=State+1
Fetch= Load 0
Dispatch 1
Dispatch 2

MIPS Multi-Cycle
Controller

to datapath

<

Microlnstruction Memory

Instruction Register

+1

Address
Select Logic

MicroProgram Counter

T

Multiplexer

e

Disp.
Table

Disp.
Table

A

]

0000

EXCEPTIONS

3-39

An exception is an unexpected event from within the processor,
e.g. arithmetic overflow. An interrupt is similar except it comes
from an event outside the processor.

Some examples

E

/O device request External |Interrupt

Invoke the operating system Internal Exception

from a user program

Arithmetic overflow Internal Exception

Using an undefined instruction |Internal Exception

Hardware maHunction Either Exception or Interrupt

To handle an exception, the basic actions are:

1. Save the address of the current (or offending) instruction in a
register called EPC (Exception Program Counter);

2. Transfer control to some specified address in the OS (exception

" handler).

After handling the exception, execution may or may not restart.

(example of upward compatibility, I/O).

Two main methods to determined the cause of an exception:

1. Include a status register which is loaded with a code indicating
the cause of the exception, the Cause register in MIPS.

2. Vectored interrupts where the address of the handler is stored
into a table which one entry per kind of exception.

5-40
MIPS APPROACH

In MIPS, we have added two registers: EPC and Cause with two
new control signals ECPWrite and CauseWrite. For simplicity, we
assume that there is only two possible causes indicated by control
signal IntCause (undefined: O, Overflow: 1). ’

Currently, the PCSource signal indicates how to feed the PC and
there are three possible cases. We add one more case to feed the
PC the constant 8000 0000 (in hexadecimal). In case of
exception, we make the machine jump to that address and
augment the finite state machine with four states:

11

IntCause=1
CauseWrite

h 4

i0
ALUSelA=0
ALUSelB=01
ALUOp=01 .
EPCWrite

To state O to begin next instruction

CauseWrite

PCWriteCond /\

IntCause
EPCWrite

PCWrite
lorD feipits PCSource
MemRead ALUOp
Memwrite | CGontrol LR S
ALUSrcA
MemtoReg |
5 RegWrite
IRWrite (501 /__ RegDst
N o
1M
a Jump
Instruction [25-0] %6 Shift = address [31-0 I 2
S \left 2 2
Instruction CO 00 00 00
OL\ [31-26] PC [31-28]
M Instruction Read
u i Address [25-21] register 1
x
1 Memory Instruction Read dRea;:I.
[20-186] register 2 4ata
MemData Registers ALUOut
Instruction L4 Write Read B
W [15-0] Instruction register gatg 2
rite
P ot Instruction [15-11] Write
register data
Instruction 0 0 0
[15-0] 1] M
u u
x ; x
Memory 1 5
data 16 32
3 Sign
r
Manty 7 lextend

Instruction [5-0]

Cause

Then connect it to the original machine.

5-41

+ Instruction fetch

Instruction decode/

. Register fetch
1
ALUSelA=0
. AlLUSelB=11
ALUOp=00
TargetWrite
z
2\ N — Q
B S/ & N
oY .Q;" _.'g '39,.
v N'\ °Q4' & 4
MemOfy address of \ = Branch - S .
computation o 95-_,\\1'\ Execution completion =~ o state 10
$ 6 8 g Jump .
ALUSelA=1 completion
ALUSelA=1 ALUSelA=1 ALUSelB=00 .
ALUSeiB=10 ALUSeiB=00 ALUOp=01 ' c'm_""tfl o
ALUOp=00 ALUOp=10 PCWriteCond PCSou
PCSource=01
V.
()
N . ,
5 %,
L > .
o Memory Memory
¥ access access R-type compietion
5 7
MemRead MemWrite ‘"-Use‘*-ii
ALUSelA=1 ALUSelA=1 RegDst=
. RegWrite Overflow
lorD=1 lorD=1 MemtoReg=0 To state 11
AlLUSelB=10 ALUSEIB=10 AL
ALUOP=00 ALUOp=00 ALUuse'o:foo
+ Write-back step

(5.54)

