MODULE 4

INSTRUCTIONS: LANGUAGE OF THE MACHINE



ARCHITECTURE MODEL

H Address
Instruction

memory

Data

Instruction je

Register #

Register #

Register #

Registers

5

%

Data

Address

Data
memory

The basic instruction set of a computer is comprised of
sequences of REGISTER TRANSFERS.

Example: Add A, B, C

#A<-B+C

Register B

!

Register C

!

Arithmetic & Logicd

Unit

!

Register A

Thisisthe point at which we begin our investigation.




OPERATIONS

The most common operations are arithmetic instructions.
The MIPS instructions to add two numbers have the form:

add a, b, c #a=b+c
add a a,d #a=a+d
add a, a, e #a=-a+e

where a, b, c, d, e are where variables are stored. It takes
three instructions to add four variables.

A segment of C code:
a=Db+c; d=a-e,

may be trandlated into:

add a, b, c #a=b+c
sub d, a, e #d=a-e
This one:
f=(g+h)-(@+]);
Into:
add t0, g, h #temp.t0 =g + h
add tl, i, | #temp. tl =i+ j

sub f, 10, t1 #f=10 - t1



REGISTER OPERANDS

The CPU has alimited number of locations called registers
to store variables (made of SRAM). The MIPS CPU has

32 registers noted $0, ..., $31 which each hold 32 bits,
orword s of data (4 bytes).

A computer has a much greater storage called the main

memory, or just memory (made of DRAM), but whichis
dower.

The compiler associates the variables of a program to

registers, attempting to store the most commonly used in
so-called register variables.

f=(+h)-@+));
Will be compiled into:

add $8, $17, $18 # temp. $8 =g + h
add $9, $19, $20 #temp. $9 =i + |
sub $16, $8, $9 #f=9%$8 - 3$9

where variables are assigned to registers by the compiler.



MEMORY OPERANDS

Data structures such as arrays are stored in the memory
since only afew elements can fit in the registers at any
moment in time. To access aword in the memory, the CPU
supplies an address. The memory isreally alarge single
dimensional array with addresses starting at O and up to

capacity.

Take the C statement:

Ali] = h + AJil;

Thevariable | is called an index (a selector).

The sequence of machine instructions (in assembly code)
could be;

w  $8, Astart($19) # load AJi] into $8
add $8, $18, $8 # add h to $8
sw $8, Astart($19) # store back into A[i]

The address of the datain memory is calculated as the sum
of Astart (address of first element of array) with the
content of register $19 which holds the index i.

Note on addressing: The memory is structured as an array
of bytes (numbered from O to 232). Since we load and store
words, the word addresses differ by 4. This method of

addressing has an effect on theindex i. It isrepresented in
register $19 asi x 4.



SO FAR...
The MIPS computer can be summarized as follows:
STORAGE:

32 registers, $0, ..., $31, Fast locations for word data
230 memory words, numbered O, 4, ..., 230-1.

INSTRUCTIONS

assembly code meaning type

add $1, $2, $3 $1=$2+3$3 operands. 3 registers
sub  $1, $2, $3 $1=$2-$3 operands. 3 registers

lw  $1, 100($2) $1=Mem[$2+100] Op’'nds: 1 reg., 1 mem.
sw  $1, 100($2) Mem[$2+100]=$1 Op'nds. 1 reg., 1 mem.

We have seen only four instructions and two types of
operands.

The MIPS CPU includes other types of operands, for
example, thereis provision for transferring half-words (16
bits) of data as well as byte in asingle instruction.

The MIPS CPU also includes other operations.

For now, we will live with this simplified view.



REPRESENTING INSTRUCTIONS

Numbers and machine instructions are both respresented
using binary numbers. Thereisno way to tell them apart
other than where they are placed in memory.

For example, aset of 32 bits represents the instruction add
according to the following format:

0 17 18 8 0 32

In binary:

000000 | 10001 10010 01000 00000 | 100000

To makeit ssimpler to discuss, we assign these fields
symbolic names:

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

op rs rt rd shamt funct

The meaning of these fieldsis conventional.

* op: operation of instruction

° rs! the first register source operand

° rt: the second register source operand

* rd: the register destination operand (result)

» shamt: shift amount (see later)

* funct: function, variant of operation specified in op



MIPSINSTRUCTION FORMATS

The load and store instructions require a different format
from instructions operating on registers.

6 bits 5 bits 5 bits 16 bits

op rs rt address

So now, we can complete the trand ation from a high level
language statement, to assembly code, to machine code:

Alill = h + All];
Assembly code;

w$8, Astart($19) # load A[i] into $8
add $8, $18, $8 # add h to $8
sw $8, Astart($19) # store back into AJi]

M achine code:

35 19 8 1200
0 18 8 8 0 32
43 19 8 1200

In binary:

100011 [10011 01000 0000 0100 1011 0000

000000 (10010 01000 01000 0000 100000

101011 10011 01000 0000 0100 1011 0000




ALTERING CONTROL FLOW

The control flow of aprogram is atered by the use of
branch and jump instructions. Let’s consider branchesfirst.

beq $1, $2, Label

This instruction compares the values stored in a pair of
registers, and depending on equality branchesto alocation
in memory. Thislocation is specified by Label.

bne $1, $2, Label

“Branch if not equal” branches if the two values are
different.

Consider the following sequence of “C” code:

if (i ==)
f=g-h
else
f=0;

In assembly code:

bne $19, $20, Else
sub $16, $17, $18
| Exit

Else: add $16, $0, $0

Exit:



ALTERING CONTROL FLOW cont.

bne $19, $20, Else
sub $16, $17, $18
j Exit

Else: add $16, $0, $0

Exit;

bne compares i and j stored in $19 and $20. If i = j, it
branches to Else:

If | =], the add gets executed and g - h is calcul ated.
Assuming these numbers are in $17 and $18, the result is
left in $16.

Following this operation, is ajump instruction j. It diverts
unconditionally the flow of control to the label Exit:.

Fina point, at label Else:, the register $0 is specidl. It is
hardwired to the value 0. The net effect of add is to copy
the value 0 to register $16.

Psuedo-instructions are constructs defined by the
assembler for purposes of clarity. For example;

move $8, $18 Istrandlated by the assembler into
add $8, $0, $18

Thus, move $16, $0 in the program segment would
correspond to the add statement above.

10



LOOPS
Consider the following snippet of “C” code:

while (save[i] == k)
=10+

We now have al that is needed for trandation into
assembly code.

Loop: mul $9, $19, %10
lw $8, SaveAddr($9)
bne $8, $21, Exit
add $19, $19, $20
| Loop

For this code to work we have to assume that:;

We have a multiplication instruction (more on that later)
i Isstored in $19

jisstored in $20

kisstored in $21

$10 has the value 4

Later, we will see that thisis somewhat awkward, but for
now it serves the purpose.

11



slt INSTRUCTION

So far, we have instructions:

e add, sub  (threeregister operands),

° Iw, sw (one register operand, one memory op’ nd),
* bne, beq  (two register operands, one branch address).
° ] (one branch address)

One technique to provide for statements like if (i < j) isto
Introduce one more instruction, “set lower than”:

st $1, $16, $17

Destination register $1 is set to value 1 if the value in $16
Is strictly smaller than that in $17 and set to 0 otherwise.

Pairing sit and bne (or beq) allows the compiler to generate

all six comparison cases (==, =, <=, >=, <, >). For
example:

if (i <j)
a=0;

will be trandated into:

slt $1, %16, $17
bne $1, $0, Exit

The other cases should be worked out as an exercise.

12



ONE MORE: jr

A jump instruction with the jJump address specified in a
register, “jump register”.

jr $1 # Jump can span entire address space.
It is useful for jumping at addresses:

» which result from a calculation (jump table)

« which were previously stored

We now have;

Format
e add, sub  (threeregister operands) R
* Iw, sw (onereg. operand, one mem. op’'nd) |
* bne, beq  (two reg. operands, one branch addr.) |
o slt (three register operands) R
° ] (one branch address) J
° jr (one register operand) R

These dll fit into just three formats

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

R op rs rt rd shamt funct
6 bits 5 bits 5 bits 16 bits

I op rs rt address
6 bits 26 bits

J op address

13




PROCEDURES

Procedures (subroutines) allow structuring of programs by
“calling” a code sequence, passing “parameters’ (and
“returning” values):

main{}

{
;;/,vap(a, 100);
\

swap(int k[], int k)
{ int temp;

temp = v[K];

VK] = v[k+1];

v[k+1] = temp;
}

We need an instruction to save the return address. The
“jump-and-link” instruction is like the “jump” instruction:

jal ProcedureAddress

but it saves the return address, the next in sequence, in
register $31. The “Program Counter” or PC, (more later),
always holds this address. Its content gets copied into $31.

jal swap # call swap
-->
swap:... # enter swap
jr $31 # return from swap

14



IMMEDIATE OPERANDS
To deal with statements of the form
a=4; b=c+1; ++i;
we reguire a mechanism for incorporating constants as part

of theinstruction. Thisisreferred to asimmediate
addressing.

addi $2, $0, 4 #a=4

addi $3, $4, 1 #b=c+1

addi $29, $29, 4 # ++| (assuming | pointer)
slti  $8, $18, 10 # $8 = 1 if $18 < 10

Most instructions can incorporate immediate addressing as
part of the source operand, but not the destination (why?).

To fit within the | format, constants are limited to 16 bits.

6 bits 5 bits 5 bits 16 bits

I op rs rt address

Larger constants must be handled in 2 passes, e.g.
load $8 with the constant 0x0007A 120:

lui  $8, 0x7 # upper half of $8 gets 0111
addi $8, $0, 0xA120 # lower gets 1010 0001 0010 0000
# (n.b. lui clears lower 16 bits)

15



STACKS

A stack is one of the most important data structuresin
computer engineering. Unlike an array, where access to
itemsis arbitrary, a stack stores and retrievesdatain a
given order: last-in-first-out.

« Anitemissad to be “pushed’ onto a stack (placed
on top) or “popped” off the stack (removed from
top).

e  Stacks are maintained using a“stack pointer”, i.e. an
address kept at afixed location (e.g. register $29).
Assume that the items to be stacked are words.

... here the value of $1 is 10
addi $29, $29, -4
<-mmmm---- sw $1, 0(%29) # push $1

|

| ... any code sequence changing $1

| ... here the value of $1 is 11

| addi $29, $29, -4

| <----sw $1, 0(%$29) # push $1
| |

| | ... any code sequence changing $1

| |

| ---->lw $1, 0($29) # pop $1
| addi $29, $29, 4

| ... here the value of $1 is back to 11

|

|

|

... any code sequence changing $1
......... >lw  $1, 0($29) # pop $1
addi $29, $29, 4

... here the value of $1 is back to 10
...Stack pointer is also back to its original value

16



STACKS cont.

Asjust seen, stacks allow the values of storage locations
(most often registers) to be saved and restored any number
of times, as long as the sequence of pushed and popsis

symmetrical.

A procedure may call another procedure. A stack allowsthe
succession of return addresses in ($31) to be kept in an
orderly fashion. The most common method is to insert pairs
of push/pop operations around the procedure call.

Example:

1000 jal fool

1004

fool: ..

2000 addi $29, $29,-4
2004 sw  $31, 0(%$29)
2008 jal foo2

2012 lw  $31, 0(%$29)
2016 addi $29,%$29, 4
2050 jr $31

foo2: ..

3000 jr $31

This can be done at any level
of nesting.

Initial state of stack $29 = 9000

9000 [ |

In body of first procedure, link
register $31 PUSHED onto stack.
Stack Pointer $29 = 8996

9000

8999 EC
8998 03
8997 00
8996 00

Before returning, the stack is
POPPED by incrementing the
stack pointer.

Each procedure must ensure that
the stack pointer is correctly

restored before returning.

Stack Pointer $29 = 9000

9000 [ ]

17



STACKS cont.
Other uses for the stack:
1. Parameter passing

In passing parameters, the first few first registers ($4 to $7)
are conventionally used for this. If the capacity of four
registers is not sufficient, the arguments are “pushed” on
the stack before calling the procedure.

2. Saving registersacross calls

In the course of a computation, registers contain the values
of variables. These values might be lost when calling a
procedure using the same registers. They need to be
preserved: the stack is used for that.

3. Spill registers

When the compiler runs out of registers, it can either:

- dllocate temporary variables on the stack

- or push the values in registers on the stack to make room,
restoring them later.

This processis known asregister allocation. How well it is
done is often the hallmark of the quality of a compiler.

4. Provide for temporary storage

foo()
{ array[1000]; [* dynamic variables go on the stack */

}

18



ADDRESSING IN BRANCHES AND JUMPS

Jump instruction:

j 10000
IS assembled into
6 bits 26 bits
J 2 10000

The 26 bit number used to represent the jump addressis
indeed very large (67,108,863, 64M). It issufficient for
most programs. However

bne $1, $0, Exit

|s assembled into
6 bits 5 bits 5 bits 16 bits

I S 1 0 Exit

The 16 bit number (65535, 64K) is clearly too small for
today’ s standards.

Branch instructions use the PC-relative addressing mode.

The program counter always contains the address of the
next instruction in sequence. Theideaisto add the 16 bit
address to the value of the PC to get the target address.
Thisway, a branch can “reach” within 216 addresses
relative to itself. Thisis efficient because the greatest
majority of branches occur around if’s and loops which
gpan a small amount of code.

19




SUMMARY OF ADDRESSING MODES

So far we have;

Register addressing: the operand is aregister
(formatsR and I)

Base addressing (or displacement addressing): the
operand is a memory location whose address is the
sum of aregister and an address (an offset) in the
instruction.

(I format)

|mmediate addressing: the operand is a constant
within the instruction itself.
(I format)

PC-relative addressing: the branch target addressis
the sum of the PC plus an address (an offset) in the
instruction.

(I format)

Absolute addressing: the jump target address is found

within the instruction itsalf.
(Jformat)

20



A COMPLETE EXAMPLE

int v[10000];

sort (int v[], int n)

{
int i, j;
for(i=0;i<ni=i+1){
for(j=i1-1;,]>=0&&VI[j]>Vv[]j+1];)j=)-1){
swap(v, J);
}
}
}
swap (int v[], int k)
{
int temp;
temp = v[K];
VIK] = v[k+1];
v[k+1] = temp;
}

21



Sorting Example

=
# Procedure Nane: swap(int v[], int k)
#
# Descri pti on: Exch. the contents of v[K]
# and v[k+1]
#
# Regi ster Allocati on: $4: poi nter to v[O0]
# $5: k
# $2: base register for
# array accesses
# $15: scratch
# $16: scratch
=
t ext
=
# Save context of caller
=
swap: addi $29, $29, -12 # Allocate space on stack
SwW $2, 0(%$29) # Save $2 onto stack
swW $15, 4(%$29) # Save $15 onto stack
SwW $16, 8(%$29) # Save $16 onto stack
=
# Mai n procedur e body
=
sl | $2, $5, 2 # Turn index k into array
# of f set
add $2, $4, $2 # + off. to base. $2 points
# to v[Kk].
| w $15, 0(%$2) # tenpl ($15) = v[K]
| w $16, 4(%$2) # tenp2 ($16) = v[k+1]
swW $16, 0(%$2) # v[k] <-- v[k+1]
swW $15, 4(%$2) # v[k+1] <-- v[K]
=
# Restore the context of the caller
=
| w $2, 0(%$29) # Restore $2
| w $15, 4(%$29) # Restore $15
| w $16, 8(%$29) # Restore $16
addi $29, $29, 12 # Restore the stack pointer

22



HEHEHFHHFHFHFEFRFEHEHEHFRHRRR

HHFEHHH

Sorting Example: cont.

jr $31 # Return to calling routine
Procedure Nane: sort(int v[], int n)
Descri ption: Sorts the contents of array

v[] in ascending order using
bubbl esort (highly
inefficient!).

Regi ster Allocation: $4: poi nter to v[O]
$5: n
$17: | oop index j
$19: | oop index i
$21- $23: scratch registers
$31: | i nkage regi ster

Save context of caller

n. b. See note bel ow regardi ng saving $5 on
function call.

addi $29, $29, -24 # Space on stack for 6 reg.

sSwW $17, 0(%$29) # Save $17 - j | oop index

sSwW $19, 4(%$29) # Save $19 - i | oop index

sSwW $21, 8(%$29) # Save $21 - scratch

sSwW $22, 12(%$29) # Save $22 - scratch

sSwW $23, 16(%$29) # Save $23 - scratch

sSwW $31, 20(%$29) # Save $31 - |inkage register

Mai n procedur e body

Set up outer loop: for (i=0; i<n; i++)

i $19, O # $19 <-- loop index i, i=0;

s sl t $21, $19, $5 #i<n ?

beq $21, 30, exitol # No, take exit if outer |oop
# conpl ete (i>=n)

23



Sorting Example: cont.

s
# Inner loop: for (j=i-1; j>=0 && v[j]>Vv[j+1]; j--)
s

addi $17, $19, -1 # $17 <-- loop index j, j=i-1
for2tst:slti $21, $17, O # j<0 ?

bne $21, 30, exitil # Yes, exit inner |oop

sl | $21, $17, 2 # Turn j into array offset

add $21, $4, $21 # $21 <-- pointer to v[j]

| w $22, 0(%21) # $22 <-- Vv[j]

| w $23, 4(%21) # $23 <-- v[j +1]

slt $21, $23, $22 # v[j+1] < vVv[j] ?

beq $21, $0, exitil # No, exit inner |oop
s
# Procedure call swap[v,]j]
#
# n.b. $5 is overwitten on function call. Rather than
# save on stack (time consunming), we save it in a
# tenmporary register and restore it inmediately
# af t er war ds.
s

nove $21, $5 # Need to change $5 for

# function cal

nmove $5, $17 # $4 <-- ptr v[j]; $5 <-- ]

j al swap

nove $5, $21 # Restore $5.
s
# Bott om of i nner | oop
s

addi $17, $17, -1 # Decrenent | oop counter j

b f or 2t st # Back to top of |oop
s
# Bott om of outer | oop
s
exitil: addi $19, $19, 1 # Increment | oop counter i

b for 1t st # Back to top of |oop

24



e

HHFEHFHEHHFR

Sorting Example: cont.

Restore context of the caller
xitol: Iw $17, 0(%$29) # Restore $17
| w $19, 4(%$29) # Restore $19
| w $21, 8(%$29) # Restore $21
| w $22, 12(%$29) # Restore $22
| w $23, 16(%$29) # Restore $23
| w $31, 20(%$29) # Restore linkage register
addi $29, $29, 24 # Restore stack pointer
Execute return
jr $31 # Return to calling routine
Test Program
Test the sorting programon an array of 10 nunbers. Start
off by printing out the Iist (denonstration of SPIMs
built-in systemcalls), sort it, and print out the sorted
result.

nove $4, $19
li $2, 4

Point to the string
Code for print string

s
# Start off by printing a short banner and the unsorted |ist.
Ho o o o o e e e e e e e o e e e e e e e e e e e e e e mmmee o
mai n: | a $16, TstArray # $16 <-- array to be sorted
i $18, 10 # $17 <-- loop counter for
# print
| a $19, Stringl # $19 <-- string to be
# printed
#
#
#

syscal | Header for unsorted array

25



Sorting Example: cont.

# Printing loop - use the syscal
# el enents.

(1) function to print array

s
mai n10: |w $4, 0($16) # Get current array el enent
i $2, # Code for print integer
syscal | # Execute cal
| a $4, crlf # String for carriage return
# + line feed
i $2, 4 # Code for print string
syscal | # Execute cal
addi $16, $16, 4 # Point to the next array
# el enent
addi $18, $18, -1 # Decrenent | oop counter
bne $18, $0, nminl0 # Loop until array printed
s
# Skip a line between unsorted and sorted out put
s
| a $4, crlf # String for carriage return
# + line feed
i $2, 4 # Code for print string
syscal | # Execute cal
s

| a $4, TstArray # Set up call to sort
i $5, 10 # $4 <-- v[0]; $5 <-- size
j al sort
s
# 1 really should have set up the print code as a function,
# but 1'lIl be lazy and sinply cut-and-past the code.
s
| a $16, TstArray # $16 <-- array to be sorted
i $18, 10 # $17 <-- loop counter for
# print
| a $19, String2 # $19 <-- string to be
# printed
nove $4, $19 # Point to the string
i $2, 4 # Code for print string
syscal | # Header for sorted array

26



Sorting Example: cont.

mai n20: |w $4, 0($16) # Get current array el enent

i $2, 1 # Code for print integer

syscal | # Execute cal

| a $4, crlf # String for carriage return

# + line feed

i $2, 4 # Code for print string

syscal | # Execute cal

addi $16, $16, 4 # Point to the next array

# el enent

addi $18, $18, -1 # Decrenent | oop counter

bne $18, $0, nmin20 # Loop until array printed
s
# Finally we exit by doing the appropriate syscall.
s

li $2, 10 # Get exit code

syscal | # And we're out of here
s
# Al the data goes here (data segnent)
s

.dat a

Stringl: .asciiz "Unsorted array:\n\n"
String2: .asciiz "Sorted array:\n\n"
crif: .asciiz "\n"
.align 2
TstArray: .word 5 299 4 -36 1101 2 25 8000 21 99

27



Passing Parameters on the Stack
foo (int a, int b, int c);

Could translate into the following assembly code:

addi $29, $29, -12 # Allocate space on stack
sw  $17, 0(%$29) # Convention is to store args
sw $16, 4(%$29) # in reverse order.

sw $15, 8(%$29)

jal foo

addi $29, $29, 12 # Must restore $sp!

etc...

Inside foo arguments could be accessed as follows:

=

# $30 = $fp is used as a frame pointer

o

foo: addi $29, $29, -NN # Allocate NN bytes for saving
sw $15, 0(%$29) # registers used by foo.
etc...
addi $fp, $29, NN # Set $fp to start of args
lw  $15, 8($fp) # $15 <-- argument a
lw  $16, 4($fp) # $16 <-- argument b
lw  $17, 0($fp) # $17 <-- argument c
etc...

28



ARRAYSVERSUS POINTERS

clearl(int array[], int size)

{
int i;
for i =0;1i<size;i=1i+1)
array[i] = 0;
}
move $2, 3$0 #i=0

Loop: sll $14, $2, 2
add $3, $4, $14
sw  $0, 0($3)
addi $2, $2, 1
slt  $1, $2, $5
bne $1, $0, Loop

clear2(int *array, int size)

{
int *p;

# %14 =1 * 4 (muli $14, $2, 4)
# $3 = &arrayl|i]

# array[i]= 0

#i=1i+1

# $1 = (i < size)

# if () goto Loop

for(p = &array[0]; p < &array[size]; p=p + 1)

move $2, $4

sll $14, $5, 2

add $3, $4, $14
Loop: sw  $0, 0(%2)

addi $2, $2, 4

slt  $1, $2, $3

bne $1, $0, Loop

# p = &array[0]

# $14 = size * 4 (muli $14, $5, 4)
# $3 = &array[size]

# Memory[p] = 0

#p=p+4

# $1 = p < &array|[size]

# if () goto Loop

The pointer version is more efficient (from 6 down to 4
Instructions). Lesson: identity of concept between indices
and pointers. Modern compilers take advantage of this.

29



All constructs found in high level languages:

SUMMARY

expressions with variables and constants,
control statements: if’s, loops,

procedures,
data structures (arrays, stacks, pointers);

can be tranglated using a small set of machine instructions
which fit in just three formats.

MIPS assembly language

Category Instruction Example Meaning Comments
' add add  $1,§2.$3 |$1=%2+3%3 |2 operands; data in registers |
Arithmetic | subtract Cqsub 2152453 (F1=852-4%3 E aperands.: data in registers |
| 5dd immediate addi $1,$2,400 |$1=%2 + 100 Uzed to add constanls .
e load word T $1,100%52) | $1 = Memond$24 100 Cata from memary o register
?;é?sfcr store word sw  $L1100052) | Memary[$2-100] = $1 Data from register to memary
oal unoer imim i $4,100 $1= 100 + 228 Loads constant in ugoer 16 bits
Sranch on agual beg  $L52,400 |0 151 == $2)} fo to FC+4+100 | Equal test; PG relative branch
Conditieral | branch onnot eq. | bne  $1,52,100 [if ($1 1= $2) go Lo PO4+ 100 | Mot equal lest; PC relative
Branch =t 0N IPQQ than slt $1_5f2.$3 Vi (32 < 23y $1=1: else $1=0 Comp.are legs than; for bedg.bne
set less then imm. |sii $1.52.000 [if ($2 < 100) 31=1; else $1=0 | Compare less than constant
i jump ] 10000 g to J.Gﬂi_-f}__ Jump Lo Largat address
: ;‘;;;:; ':‘I"L'!'mn jumnp register ir 31 0 to $31 | For switch, procedure retum
| jurnp and link jal 10000 $31 = PC < 4; go to 10000 For pracedurs call

This achievement did not come about overnight, but isthe
result of 4 decades of technical evolution. Most modern
RISC CPU'’ s have an instruction set which resembles that
of MIPS. Once thisoneis understood, the others can be
understood by differences (M88000, SPARC, ALPHA,
1860, RS/6000, HPSpectrum, PowerPC). Some other have
only part of the features of RISC style (Pentium).

30



MIPS Assembly Language (Short Form)

Example

az
registers

[ %0, %1, $2... .,
Hi. Lo

MIPS operands

Comments

Fast locations for data. In MIPS, data must be in registers to perform
arithmetic. MIPS register $0 always equals Q. Register $1 is reserved

for the assembler to handle pseudoinstructions and large constants. Hi
and Lo are 32-bit registers containing the results of multiply and divide.

22 | Accessed only b 1a transter instructions. MIPS uses byvte addresses,
memary Meﬂggé?]tﬂggmﬂé%]ggi R - sequentia?rwgrgg differ by 4. Memaory holds data strut::}:ures, such as
B8 m_:_rrds ¥ arrays, and spilled registers, such as__th-:use saved an procedure_ calls.
MIPS assembly language
Category Instruction N Meaning Comments
adld add $1,$2,$3 $l =52 + 53 3 operands; exception possible 4
subtract | sub $1,52. 43 $1=$2-%3 | 3 operands; exception possible
add immediate | addl $1,$2,100 | $1 = $2 1+ 100 + constant; exception possible
| &dd unsigned sddu 31,3253 | $1 = 42 + §3 3 operands; no exceptions
subtract unsigned | suby $1,$2,$3 | $1 = §2 - §3 i 3 operands; no ex{_:eptinns
add imm, unsign. | addiu $1,%2,100 | $1 = $2 + 100 + constant; no exceptions
Arithretic | Move fr. copr. reg. | mied $1,5epc 1= $.epc _ Used to Eet E.:(cepcian-F'C ;
rouitiphy rmult 52,53 Hi, Lo = $2 ¥ 3 Gd-bit signed product in Hi, Lo
multiply unsigned muity 52,53 Hi, Lo = $2 ¥ §3 B0 unsigned product in Hi. Lo
divide div $2,53 Lo = $2 + $3, Hi = $2 mod 33 | Lo = quotient, Hi = remainder |
[aivice unsigned | divu $2,3 Lo = $2 + $3, Hi = $2 mod $3  Unsigned quotient and remaincer
_ Move from Hi mfhi $1 $1=Hi Used to get copy of Hi
Move from Lo mflo §1 H1= Lo Lse to get copy of Lo
and and $1,%2.%3 81 =42 & %3 3 register oparands; logical AND
| or or $1,82,%3 FL=%21%3 3 register operands, logics| OR
logleal and immediste | andi $1,82,100 | $1 = $2 & 100 Logical AMD register, constant
or immediate ori $1,$2,100 | $1 =521 100 Logical OR register, constant
shift left logical sl $1,$2.10 $1 =852 == 10 Shift left by constant
shift right logical | sl $1,52,10 $1=%$2 =» 10 Shifl right by constant
o load word Iw $1.100(%2) $1 = Memory [£24-100] | Data from memory to register |
transfer | Store word sw $1,1000$2) | Memaory [$2+100] = 1 Data from register to memory
load upper imm. | Ui $1,100 $1 =100 x 239 Loads constant in upper 16 bite
| branch on equal | beq $1,%2,100 | if [$1==%2) go 10 PC+4+100%4| Equal test; PO relative branch
branch on not ed. | bne $1,$2,100 | if ($11=$2) go to PC+4+100x4 | Nol equal test; PC relative
Conditional | st on less than | st $1 2 43 if ($2 < $3) $1=1; else $1=0 | Compare less than; 2's complement
branch | set less than imm.| siti $1,$2,100 | if ($2 < 100) $1=1; else $1=0 | Compare = constant; 2's comp.
sel less than uns. | sltu $1,$2,93 | if ($2 < $3) $1=1; else $1=0 | Compare less than: natural rumber
set Lt Imm, uns, | sltiu $1,$2,100 | if ($2 < 100) $1=1; alse $1=0  Compare < constant: natural
i jurmp J 10000 g0 1o 10000 Jump to target address
Unl:u.]'.\lzb:-:lnr:}naf jurmp register r$31 g0 to $31 For switch. procedure returm
jump and link jal 10000 531 =PC + 4; go to 10000 For procedure call

Main MIPS assembly language instruction set. The floating-point instructions are shown in Figure 4,44 on page 241. Appencdiz &
gives the full MIPS assembly language instruction set,

31



MIPS Register Allocation Convention

Register name = Number Usage
TEro o] Constant O
al 1 Rasaned for assembler
vO b Expression evaluation and results of a function
vl 3 Expression evaluation and results of a function
&l 4 Argurment 1
al =3 Argument 2
a2 g Argurment 3
a3 [ Argument 4
it] g Temporary (not preserved across eall)
ul 2] Temporary (nol presenved across call)
i2 15 Ternparary (not presarvad across call}
] 11 Tempaorary (not presenved across call)
L4 12 Temporary (not presened across call)
5 13 Temporary (not presened across call)
16 14 Temporary (not preserved across call)
17 15 Termparary {not preserved across call)
55 i6 S-ave.d temporary ipresaned aoross call)
51 17 Saved temporary (preserved across call)
52 18 Saved temporary {preserved across call)
53 19 Saved temporary (presaned across call)
54 20 Saved temporary (presenved acrass calj
55 21 Saved temporany (preserved across call)
sB 23 Saved lamporary (preserved across call)
&7 23 Saved ternporary (presened across call)
t2 24 Tamparary (not preserved across call)
i 25 Temporary (not presened across call)
ki 28 Raserved for OS5 kernel
k1 27 Resered far 05 kemel
2p 25 Pointer to global area
=) 28 Stack pointer
in an Frame pointer
ra 31 Return address (used by function call)

FIGURE A.9 MIPS registers and usage convention.



