
Module 3

Logic Circuits With Memory

1

ELEMENTARY FEEDBACK

Consider the following circuit:

0
1

OE

Unlike combinational logic circuits that we’ve seen thus far,
notice that this circuit has a FEEDBACK line connected from
the output back to the input.

This gives the circuit an interesting behaviour as can be seen
from the timing diagram below:

O

E

When signal E = 0, the NAND gate is forced to 1, so the output
O is held constant at 1. However when E = 1, the NAND acts
as an inverter.

We observe from the simulation that the circuit oscillates with a
fixed period. The output is no longer strictly a function of the
input.

2

THE STATE TRANSITION TABLE

In describing circuits such as the simple oscillator we need to
describe the output as a time-varying function, e.g. O(t).

We call O(t) the PRESENT STATE and O(t+∆t) the NEXT
STATE.

We can summarize the behaviour of this simple circuit by noting
that

O(t+∆t) = f(E,O(t)).

This behaviour can be described using a function similar in
appearance to a truth table, the STATE TRANSITION TABLE.

E O(t) O(t+∆t)
0 0 1
0 1 1
1 0 1
1 1 0

The state transition can describe the behaviour of a logic circuit
with feedback much in the same way that a truth table describes
the behaviour of combinational logic.

The feedback line serves as a MEMORY. O(t) is referred to as a
STATE VARIABLE.

The NEXT STATE, O(t+∆t), is a function of the PRESENT
STATE, O(t), and the INPUT E. This is exactly the relation-ship
described by the state transition table.

3

THE STATE TRANSITION TABLE cont.

Let’s take a closer look at the oscillator we built earlier. How do
we go about analyzing it?

0
1

OE

Assume for the moment that O(t) = 0 and E = 1, and that all
gates have a delay of 1 Tg (gate delay).

If O(t=0) = 1, then the initial state of the NAND gate is 1.

At t = 1 Tg, the output of the NAND changes from 1 to 0.

At t = 2 Tg, the output of the first inverter changes from 0 to 1.

At t = 3 Tg, the output O changes from 1 to 0.

At t = 4 Tg, the NAND responds by changing from 0 to 1.

At t = 6 Tg, the O changes from 0 to 1.

∆t for this circuit = 3 tg. The period of oscillation is 2 x ∆t.

Hence the oscillator frequency is 1
2 ∆ t

= 1
6 Tg

4

THE S-R LATCH

Consider the following circuit:

S

R

X

Y

This circuit is considerably more complex than the simple
oscillator considered earlier.

S R X(t) Y(t) X(t+∆t) Y(t+∆t)
0 0 0 0 1 1
0 0 0 1 0 1
0 0 1 0 1 0
0 0 1 1 0 0
0 1 0 0 0 1
0 1 0 1 0 1
0 1 1 0 0 1
0 1 1 1 0 1
1 0 0 0 1 0
1 0 0 1 1 0
1 0 1 0 1 0
1 0 1 1 1 0
1 1 0 0 1 1
1 1 0 1 1 1
1 1 1 0 1 1
1 1 1 1 1 1

5

THE S-R LATCH cont.

Several observations can be made from a direct observation of
the state transition table:

• If S=1 and R=0, then X=1 and Y=0 unconditionally. In
other words, the output depends only on the input (as in the
case of combinational logic).

• If S=0 and R=1, then X=0 and Y=1 unconditionally.

• If S=0 and R=0, then X(t+∆t) = X(t) and Y(t+∆t)=Y(t),
provided that X(t) ≠ Y(t).

• If S=0 and R=0 and X(t) = Y(t), the circuit acts as an
oscillator, i.e. X(t+∆t) and Y(t+∆t) are UNSTABLE states.

If the circuit could be operated such that X ≠ Y, then one can
observe 3 distinct states:

S=1, R=0 SET mode, X(t+∆t) = 1 unconditionally
S=0, R=1 RESET mode, X(t+∆t) = 0 unconditionally
S=0, R=0 MEMORY mode X(t+∆t) = X(t)

where Y = X

This circuit is called a LATCH and forms a basic memory
element (the building block of static rams).

We next have to consider the conditions under which we can
guarantee that Y = X .

6

ANALYSIS OF THE S-R LATCH

S

R

Q

Z

We will use the variable Q to denote the primary output of the
latch. The second output, labelled Z in the diagram, is usually
understood to correspond to Q when the circuit is operating as a
latch.

The equations for Q and z are respectively:

Q = (S Z)

Z = (R Q)

Applying de Morgan’s law we derive an alternate form

Q = S + Z

Z = R + Q

7

ANALYSIS OF THE S-R LATCH cont.

Now if we substitute Z for Q and Q for Z we obtain an
alternate realization for the S-R latch:

Z = S + Q

Q = R + Z

This should not be surprising given the Duality principle.

S

R
Q

Z

In the analysis that follows, we will use the NOR version of
the latch to derive a set of operating conditions that guarantees
Z = Q .

We begin by writing the circuit equations:

Q (t + Tg) = R (t) + Z (t)

Z (t + Tg) = S (t) + Q (t)

Notice that this takes circuit propagation delay into account.

8

ANALYSIS OF THE S-R LATCH cont.

Applying De Morgan:
Q (t + Tg) = R (t) • Z (t)

Tg units later:
Q (t + 2 Tg) = R (t + Tg) • Z (t + Tg)

Substituting:
Q (t + 2 Tg) = R (t + Tg) • S (t) + Q (t)

Z (t + 2 Tg) = S (t + Tg) • R (t) + Z (t)

When is Z = Q ?

Negate:
Q (t + 2 Tg) = : ; < R (t + Tg) • S (t) + Q (t) BCD

De Morgan:

Q (t + 2 Tg) = R (t + Tg) + S (t) + Q (t)

= R (t + Tg) + S (t) • Q (t)

= R (t + Tg) S (t) + S (t) + S (t) • Q (t)

= S (t) R (t + Tg) + Q (t) + S (t) • R(t + Tg)

If Z = Q Then

S (t + Tg) • R (t) + Z (t) = S (t) R (t + Tg) + Q (t) + S (t) • R(t + Tg)

9

ANALYSIS OF THE S-R LATCH cont.

If Z = Q Then

S (t + Tg) • R (t) + Z (t) = S (t) R (t + Tg) + Q (t) + S (t) • R(t + Tg)

Which means that:

• S(t+Tg) = S(t) S held stable for at least Tg units
• R(t+Tg) = R(t) R held stable for at least Tg units
• S(t) • R(t) = 0 S ≠ 1 and R ≠ 1

Furthermore, in order to correctly latch the data in the first place,
R (or S) must be toggled high for at least 2Tg units to be sure
that the latch is correctly reset (or set).

By maintaining the inputs stable for a minimum of 2Tg units and
ensuring that S ≠ 1 and R ≠ 1, then Y = Q .

S R Q Q(t+∆t)

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 undef
1 1 1 undef

Under these assumpt-
ions the state trans-
ition table for the S-R
latch is given at left.

Since Z = Q’, it does
not appear in the
table.

10

APPLICATION - SWITCH DEBOUNCING

A slight variation of the S-R latch using 2 NAND gates yields an
S R latch. Consider the circuit shown below.

+5V

H

L

debouncedS

R

In the state shown, the input to the latch corresponds to S = 0
and R = 1, which means the output is 1.

When the switch moves off the H contact, S = R = 1, so
the latch maintains its state. On contact with L, S = 1, and
R = 0, changing the output of the latch from 1 to 0.

Successive bounces off the L contact cannot change the state of
the latch since this corresponds to S = R = 1.

11

THE CLOCKED S-R LATCH

Consider the modified version of the S-R latch shown below.

S

C

S'

R
Q'

Q

R'

It looks like the NAND version of the latch, but has an addi-
tional control line labeled C, called the CLOCK. Using stand-
ard methods the state transition table is determined as follows:

C S R Q(t) Q(t+∆∆∆∆t)

0 0 0 0 0

0 0 0 1 1

0 0 1 0 0

0 0 1 1 1

0 1 0 0 0

0 1 0 1 1

0 1 1 0 0

0 1 1 1 1

1 0 0 0 0

1 0 0 1 1

1 0 1 0

Notice that when C =
1, the state transition
table is identical to that
of the non-clocked
latch.

When C=0, both input
NANDs are forced to 1
which forces the latch
into the MEMORY
state.

The Clock line thus
determines when the
latch is allowed to
change state.

0

1 0 1 1 0

1 1 0 0 1

1 1 0 1 1

1 1 1 0 undef

1 1 1 1 undef

12

THE CLOCKED S-R LATCH cont.

From now on we will refer to the clocked latch as a FLIP-FLOP
provided that we operate it according to the following rules:

• Inputs (S & R) can only change when C is low.
• Inputs must be held stable for the entire interval when the

clock is high.
• The clock must be held high for at least 2 Tg (to ensure that

the data gets latched properly).

In this mode of operation the role of the clock is to synchronize
state changes. Rather than defining the next state of Q(t) as
Q(t+∆t), we instead use the notation Q(t+Tc), or Q̂ to indicate
that the state change is determined by external synchronization
(i.e. a clock).

This also simplifies the state transition table:

S R Q Q̂

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 undef
1 1 1 undef

13

THE CLOCKED S-R LATCH cont.

The timing behaviour of the clocked S-R latch is shown in the
following LogicWorks simulation.

S

C

S'

R
Q'

Q

R'

Q'

Q

R

S

C

100

Unfortunately the clocked latch has a major limitation which
makes it very difficult to use (i.e. as a flip-flop) in practice.

As long as the clock is high, the output will always follow the
input (i.e. state changes are not completely governed by the
clock).

Some control is afforded by creating asymmetric clock pulses
(i.e. short HIGH intervals), but this can make design using these
devices VERY complicated as we shall see shortly.

14

THE J-K FLIP-FLOP

The J-K flip-flop is a slight variation on the S-R where the S=1
R=1 state is given a distinct behaviour.

J K Q Q̂

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

Notice that we’ve renamed S
and R with J and K to
indicate this new bahaviour.

When J=K=1, the next state
of Q is its complement.

We call this behaviour
TOGGLING.

In fact, the J-K flip-flop can
be derived from the S-R as
follows.

All we need to do is to figure out
what to feed the S and R inputs of the S-R flip-flop when we
encounter the case of J = K = 1 with Q = 1 and Q = 0
respectively.

J K Q S R
0 0 0 0 d
0 0 1 d 0
0 1 0 0 d
0 1 1 0 1
1 0 0 1 0
1 0 1 d 0

1 1 0 1 0
1 1 1 0 1

15

THE J-K FLIP-FLOP cont.

From the truth table for S and R vs. J, K, and Q, we obtain the
following Karnaugh maps:

00 01 1011

1

0

S

J

KQ

0 0

0

0d

d1 1

00 01 1011

1

0

R

J

KQ

1

1

d d0

0 0 0

From the maps we obtain the following functions for S and R as
functions of J, K, and Q:

S = J Q R = KQ

Which results in the following circuit:

Q'

QJ

C

K

Note that the ANDs associated with the expressions for S and R
fold into the NAND gates as shown above.

According to the theory, this should implement the state
transition table for the J-K flip-flop. But does it?

16

THE J-K FLIP-FLOP cont.

Some modification of the circuit will be required before
proceeding with the simulation.

Because of the additional feedback lines, it is impossible to force
the flip-flop into an initial state, e.g. by setting J = 1,
K = 0.

Practical flip-flops have PRESET and CLEAR lines which allow
the flip-flop to be forced into an initial state, regardless of the
clock.

Clr '

J

C

K

P r '

Q

Q'

When Pr = 0 and Clr = 1, the top right and bottom left NANDs
are forced to 1, which forces the bottom right NAND to 0. We
say that this PRESETS the flip-flop to 1.

17

THE J-K FLIP-FLOP cont.

When Pr = 1 and Clr = 0, the top left and bottom right NANDs
are forced to 1, which forces the top right NAND
to 0. We say that this CLEARS the flip-flop to 0.

With this modification, we can guarantee the initial state of the
flip-flop (especially important in a simulation!).

We’re now ready to run the simulation:

Q'

Q

K

J

C

Clr '

P r '

100 200

The result? Almost, but not quite. The toggle (J = K = 1) mode
does not work properly. The flip-flop oscillates while the clock
is high. Why?

The problem is referred to as a RACE condition. Because of the
feedback lines from Q to J and Q to K, the signal has the
opportunity to work its way back to the input BEFORE the
clock is pulled low.

To operate properly as a J-K flip-flop, the clock must be adjusted
so that only ONE state change occurs.

18

THE J-K FLIP-FLOP cont.

From examination of the circuit, it takes 2 Tg for the latch to
change state + an additional 1 Tg for the signal to propagate
through the input NAND gates.

If the clock is high for ≥ 3 Tg, a race condition will occur.

If the clock is high for < 2 Tg, the latch will not operate
correctly.

So, for this circuit to operate properly, the clock high period
must be exactly 2 Tg.

Let’s test the theory through simulation:

Q'

Q

K

J

C

Clr '

P r '

100

This time everything works, but the circuit is clearly impractical
because of its dependence on precise clock timing.

We need a different flip-flop design that is less dependent on the
clock signal.

19

THE MASTER-SLAVE FLIP-FLOP

Consider the following circuit:

X

Y Q'

Q
S

R

C

Master Slave

active when C = 1 active when C = 0

It is called a MASTER-SLAVE flip-flop and is designed to make
timing less dependent on the clock.

Notice that it is formed from two clocked latches, the first
(master) operates when C = 1, and the second (slave) operates
when C = 0.

When C = 1, the master changes state according to S and R; the
slave is forced to memory mode.

When C = 0, the master is forced into memory mode, and the
slave is activated, changing state according to the master’s
outputs X and Y.

As long as C = C there cannot be more than a single state
change for a given clock pulse, i.e. races are eliminated.

20

THE MASTER-SLAVE FLIP-FLOP cont.

We can compare the behaviour of the clocked latch and master-
slave flip flops in the following simulation.

Q' latch

Q' ms

Q ms

Q latch

Y ms

X ms

R

C

S

100

Notice that the master-slave and clocked latch flip-flops have
identical responses (as one would expect) except for when the
outputs change state.

• The clocked latch changes state when C goes from 0 -> 1

• The master slave changes when C goes from 1 -> 0

This simulation only confirms that the master slave and clocked
latch have the same state transition table.

In order to verify that race conditions are prevented, we need to
consider a master-slave implementation of the J-K flip-flop.

21

THE J-K MASTER-SLAVE FLIP-FLOP

We can construct the master-slave version of the J-K from the
clocked latch version shown earlier by cascading the additional
slave stage as shown below.

X

Y

Q

Q'

Cl r '

P r '

J

K

C

Let’s repeat the earlier simulation where Tc = 10 Tg.

Q'

Q

Y

X

C

K

J

Cl r '

P r '

100 200

22

THE J-K MASTER-SLAVE FLIP-FLOP

The J-K master-slave flip-flop gets around the earlier depend-
ency on the clock pulse width (to avoid race conditions).

As long as Tc ≥ 2 Tg, the circuit will function correctly.

Unfortunately, the master-slave still has one liability which is
illustrated in the following simulation.

Q'

Q

Y

X

C

K

J

Cl r '

P r '

100

Normally the flip-flop “remembers” the state of J-K just prior to
the 1 -> 0 clock transition.

The J = 1, K = 1 state poses problems because the master will
latch J = K = 1, regardless if either changes to 0 before the clock
transition.

This is called 1’s and 0’s catching where the 1 refers to the flip-
flop changing from 0 to 1, and the 0 to the flip-flop changing
from 1 to 0.

23

EDGE-TRIGGERED FLIP-FLOP

Consider the circuit shown below.

S

R

Q

Q'

Cl r '

C

P r '

As you might guess from the labels, this is another S-R flip-flop
(which can be converted to a J-K in the usual way).

In terms of complexity, it is about the same order as the master-
slave version we considered earlier. This architecture is refer-red
to as EDGE-TRIGGERED for reasons that will hopefully
become clear shortly.

24

EDGE-TRIGGERED FLIP-FLOP cont.

An analysis of the edge-triggered flip-flop (which is quite
complex) leads to the following state transition table.

C(t) C(t+T) S(t) R(t) Q(t) Q(t+T)

0 0 don’t care 0 0

0 0 don’t care 1 1

0 1 0 0 0 0

0 1 0 0 1 1

0 1 0 1 0 0

0 1 0 1 1 0

0 1 1 0 0 1

0 1 1 0 1 1

0 1 1 1 undef undef

0 1 1 1 undef under

1 0 don’t care 0 0 falling
edge1 0 don’t care 1 1

1 1 don’t care 0 0

1 1 don’t care 1 1

no clock
transition

no clock
transition

rising
rising
rising
rising
rising
rising
rising
rising

Notice that the table explicitly represents transitions of the clock,
i.e. C(t) and C(t+T).

The essential property of the edge-triggered flip-flop is that it
samples its inputs ON THE RISING EDGE of the clock.

Input changes at any other time are ignored. The transition table
above corresponds to a RISING edge-triggered flip-flop.

25

EDGE-TRIGGERED FLIP-FLOP cont.

It is also possible to design FALLING edge-triggered flip-flops
which have a similar state transition table except that inputs are
sampled on the falling edge of the clock.

In both cases the flip-flops change after an interval marked by
the active edge of the clock, the propagation delay, Tpd.

Circuit properties impose certain constraints on how these flip-
flops are operated. These are summarized below.

clock

S

R

Q

Tsu
Th

Tpd

There are 3 important par-
ameters, all measured with
respect to the active edge of
the clock:

• Tsu: Set-up time
• Th: Hold time
•Tpd: Propagation delay

Tsu defines the interval prior
to the active edge when
INPUTS MUST BE HELD
STABLE.

Th defines the interval
following the active edge

of the clock during which inputs
must be held stable.

Tpd defines the maximum interval following the active edge
when the flip-flop outputs change in response to the input.

26

EDGE-TRIGGERED FLIP-FLOP cont.

Tsu + Th defines a WINDOW during which inputs must be held
stable.

In fact, we can use this terminology to define the operating
constraints for all the flip-flops we have encountered thus far.

Clocked Latch:

• Tsu = 0 and Th is the interval during which the clock is
high. Tpd is 3 Tg for the circuit shown earlier.

Master-Slave:

• For J-K or S-R, Tsu = interval during which clock is high.
For D, Tsu = 3 Tg, the time required for the master to
latch prior to the 1 -> 0 clock transition. Th = 0, and
Tpd = 3 Tg, the same for the clocked latch.

Edge-Triggered:

• These parameters have no dependency on the clock, i.e.,
they are CIRCUIT DEPENDENT. This is why edge-
triggered flip-flops have such widespread use in design.

For D implementations, it’s virtually impossible to tell master-
slave and edge-triggered flip-flops apart. They both can be made
to sample and change states on either the rising or falling edges
of the clock.

27

EDGE-TRIGGERED FLIP-FLOP cont.

Recall that the edge-triggered flip-flop grew out of a limitation of
the J-K master-slave, the problem with 1’s and 0’s catching.

Let’s repeat the earlier simulation, but this time we’ll compare
the outputs of the two different flip-flops.

A J-K edge-triggered flip-flop is fabricated in the usual way:
(we’ll use a falling-edge triggered version in the experiment)

S

R

Clk

Q

Q'

P r '

C l r '

C

Cl r '

P r '

Q'

J

K

Q

And here’s the simulation comparing the 2 flip-flop types:

Qms

Qet

C

K

J

Cl r '

P r '

100

The ET version is not susceptible to 1’s and 0’s catching.

28

OTHER FLIP-FLOP TYPES

D FLIP-FLOP

S

R

QD

Clock

A subset of the S-R (J-K) flip-flop
where R = S’. It produces a delay of
exactly 1 clock period.

D(t) Q(t) Q(t+T)

0 0 0
0 1 0
1 0 1
1 1 1

D flip-flops are used to build registers. The edge-triggered
variety has a particularly simple circuit (as compared to the S-R
implementation shown earlier).

T FLIP-FLOP

J

K

QT

Clock

This is another subset of the J-K flip-
flop in which J = K. It is the basic
building block used to fab-ricate
COUNTERS.

T(t) Q(t) Q(t+T)

0 0 0
0 1 1
1 0 1
1 1 0

29

ANALYSIS OF SEQUENTIAL CIRCUITS

Flip-flops are the simplest forms of the more general class of
SEQUENTIAL CIRCUITS. The general model for such a
circuit is shown below.

D Q

Q

D Q

Q

D Q

Q

•
•
•

C
O
M
B
I
N
A
T
I
O
N
A
L

L
O
G
I
C

•
•
•

•
•
•

Inputs Outputs

Q0

Q1

Qn

I0

I1

Ij

O0

O1

Ok

The logical description of such a circuit is given by its corr-
esponding state transition table. We will now consider is how to
determine the state transition table given the circuit diagram.

30

ANALYSIS OF SEQUENTIAL CIRCUITS cont.

The state transition table will have the following form:

I1 I2 Ij Qn Q1 Q0 Q ˜ n Q ˜ 1 Q ˜ 0 O0 O1 Ok

0 0 0 0 0 0
0 0 0 0 0 1
...
1 1 1 1 1 1

The left side is composed of the INPUTS, I0, I1, ..., Ij and
STATE VARIABLES Q0, Q1, ..., Qn. Each flip-flop (memory
element) is associated with a unique state variable.

The right side is composed of the NEXT STATES of each state
variable, i.e., Q ˜ 0, Q ˜ 1, ..., Q ˜ n, and the OUTPUTS, O0, O1, ..., Qk.

The outputs are easy to determine as they are just combinational
logic functions, i.e., Oi = f(I1, I2, ..., Ij; Q0, Q1, ..., Qn).

The next states of the Qi are determined in similar fashion, but
an additional step is required.

• First, determine the functions associated with each flip-flop
control input. In the case of D flip-flops, one would have a
single expression for each D input where Di = f(I1, I2, ..., Ij;
Q0, Q1, ..., Qn). For J-K flip-flops, one would have two
equations, i.e., for Ji and Ki.

31

ANALYSIS OF SEQUENTIAL CIRCUITS cont.

• Once the flip-flop equations are determined, the state
transition table for the particular flip-flop is used to
determine the next state.

This is quite straightforward for the case of D flip-flops, as
Q(t+T) = D(t).

Example 1:

D

C

S

R

Q

Q

D

C

S

R

Q

Q

0
1

0
1

Q1 Q0

We now compute Q1(t+T) and Q0(t+T) by substituting the
expressions for D1 and D0 respectively, i.e.,

Q1(t+T) = XOR(Q1(t), Q0(t))

Q0(t+T) = Q 0 (t)

1. Outputs

In this case the circuit has no
formal outputs. Sometimes
the “output” consists of the
state variables themselves.

2. Flip-Flop Equations

D1 = XOR(Q1, Q0)

D0 = (Q0)’

It is now easy to fill in the right hand side of the state transition
table and predict the behaviour of the circuit.

32

ANALYSIS OF SEQUENTIAL CIRCUITS cont.

State Transition Table:

Q1(t) Q0(t) Q1(t+T) Q1(t+T)
0 0 0 1
0 1 1 0
1 0 1 1
1 1 0 0

According to the table, this circuit corresponds to a Modulo-2
counter. Let’s check this prediciton against the state transition
table.

Q1

Q0

C

200

Which is exactly the case. (By the way, the notations Q(t+T)
and Q̃ are used interchangably in these notes, so don’t be
confused).

Sequential circuits with D flip-flops are particularly easy to
analyze, because the D flip-flop equation (which summarizes its
state transition table) amounts to an identity operator.

Analyzing circuits with J-K flip-flops is a bit more complicated.

33

ANALYSIS OF SEQUENTIAL CIRCUITS cont.

Let’s start off by deriving the equation for Q(t+T) as a function
of J(t), K(t), and Q(t).

00 01 1011

1

0 0

01

1
Q(t)

JKQ(t+T)

0

0

1

1

From the map we determine that Q (t + T) = J Q (t) + K Q (t).

For analyzing sequential circuits, it’s much easier to work with
so-called FLIP-FLOP equations because they allow us to derive
total expressions for Q(t+T) via substitution.

Another Example:

J
C
K

S

R

Q

Q

J
C
K

S

R

Q

Q

0
1

0
10

1

Q1 Q0

E

This circuit has a single
input E.

From the schematic at left
we find:

J0 = K0 = E

J1 = K1 = E • Q0

The state transition table for the
J-K flip-flop is represented at left in
Karnaugh map form.

Thus:
Q 1 (t + T) = E Q0 (t) Q 1 (t) + E Q0 (t) Q 1 (t)

Q 0 (t + T) = E Q 0 (t) + E Q 0 (t)

34

ANALYSIS OF SEQUENTIAL CIRCUITS cont.

From these equations we can fill in the state transition table as
follows:

E Q1(t) Q0(t) Q1(t+T) Q0(t+T)
0 0 0 0 0
0 0 1 0 1
0 1 0 1 0
0 1 1 1 1
1 0 0 0 1
1 0 1 1 0
1 1 0 1 1
1 1 1 0 0

This behaviour is similar to the circuit we encountered earlier as
long as the E = 1.

However, when E = 0, the counter doesn’t count - it simply
holds its current state. The E stands for ENABLE.

Again, let’s verify the prediction of the state transition table
against the circuit simulation. It works!

Q0

Q1

E

C

200

35

TIMING ANALYSIS OF SEQUENTIAL CIRCUITS

The subject of timing analysis comprises an entire field of study
within Digital Systems Design.

For now we’ll consider one particular model of timing behaviour
based on edge-triggered flip-flops. The reasons for this model
will become apparent in more advanced courses.

Edge-Triggered Timing Model:

• All registers are composed of edge-triggered flip-flops.

• All registers are synchronized by a single clock on the same
clock edge.

• The clock is connected to all registers at all times (i.e. the
clock may NOT be gated using combinational logic).

• All inputs must respect Tsu and Th requirements imposed
by the maximum values over all registers in the circuit.

• The clock must respect any timing constraints imposed by
registers. For edge-triggered flip-flops this usually
corresponds to a minimum clock pulse width, Tw.

Both of the circuits that we have encountered thus far meet
these requirements.

Timing analysis (for the purposes of this course) will involve
determining the maximum operating frequency of the circuit.

36

TIMING ANALYSIS cont.

Consider the counter circuit analyzed earlier:

J
C
K

S

R

Q

Q

J
C
K

S

R

Q

Q

0
1

0
10

1

Q1 Q0

E

and that Q0 has parameters Tsu = 0nS, Th=10nS, Tpd=25nS
and Tw=25nS.

Assume (for the sake of argument) that the single gate in the
circuit has a propagation delay of 100nS. In general we’re
interested in the LONGEST combinal logic delay from output
back to input over the entire circuit. We call this parameter Tcl.
In this case Tcl is simply the propagation delay of the gate, i.e.
Tcl = 100nS.

Determine the maximum operating frequency for this circuit.

The maximum (worst case) delays for each parameter are
Tsu = 5nS, Th = 10nS, Tpd = 25nS, Tw = 25nS, Tcl = 100nS.

To determine maximum operating frequency, we need to trace
through one cycle of the clock:

Assume that register
Q1 has parameters

Tsu = 5nS
Th = 5nS
Tpd = 20nS
Tw = 20nS

37

TIMING ANALYSIS cont.

25

20

25 100

5

130 nS

We begin at the rising edge of the clock (assuming flip-flops are
rising edge triggered).

• 20nS after the clock edge, flip-flop Q1 changes in response.

• 5nS later, at Tc + 25, flip-flop Q2 changes in response.

• The inputs to the gate are now stable. 100nS later the
output changes in response to these inputs.

• Thus after a total of 125nS, the inputs to the flip-flops are
stable. However, before clocking again, an additional 5nS
(set-up time for Q0) must be waited.

38

TIMING ANALYSIS cont.

The minimum time between clock edges thus totals 130nS,
which means the maximum frequency is

1
130nS

 = 7 . 69 Mhz.

From this analysis we may infer the following formula:

f max = 1
Tsu + Tcl + Tpd

,

where Tsu, Tcl, and Tpd correspond to the maximum delays
over the entire circuit.

What happened to Th?

Nothing. Because Tpd is generally greater than Th, the inputs to
each flip-flop are guaranteed to be stable provided that any
external inputs are held stable as well.

One of the biggest problems in designing these systems is
controlling when external inputs change relative to the clock.

The reason why this clocking strategy is used is because it
greatly simplifies the circuit timing requirements (and the
subsequent analysis).

39

SEQUENTIAL CIRCUIT BUILDING BLOCKS

As was the case with combinational logic, system designers
often specify systems in terms of common building blocks such
as counters and registers.

REGISTERS

The function of a register is to hold data. Making one is easy -
an n-bit register is composed of n D flip-flops.

D Q

Q

D Q

Q

D Q

Q

.

.

.

I0

I1

In

Q0

Q1

Qn

Clock

Write

Unfortunately the
simple scheme at left
violates our timing
rules!

The only way in
which data can be
selectively held or
written is to gate the
clock as shown.

We could use a more complex flip-flop that incorporates a
memory state, but using an edge-triggered flip-flip is attractive
because it can be made from only 6 NAND gates.

40

SEQUENTIAL CIRCUIT BUILDING BLOCKS cont.

An alternative strategy, is to fabricate registers using D flip-flops
and multiplexers as shown below.

D Q

Q

D Q

Q

D Q

Q

.

.

.

I0

I1

In

Q0

Q1

Qn

A
B
S

X

A
B
S

X

A
B
S

X

Load
Clock

By using multiplexers as shown, the flip-flop inputs can select
from either the current output, in which case the register will
HOLD its current contents, or from the external inputs, in which
case the register will LOAD new values.

This scheme is sometimes referred to as a SYNCHRONOUS
register.

In fact, one can generalize the scheme by using larger
multiplexers to select from a number of different inputs.

41

SEQUENTIAL CIRCUIT BUILDING BLOCKS cont.

We can take the synchronous register idea further to construct
SHIFT REGISTERS.

Consider the circuit below.

D

C

S

R

Q

Q

D

C

S

R

Q

Q

D

C

S

R

Q

Q

D

C

S

R

Q

Q

C

QD

P r '

C l r '

QC

S

QB

QA

SI

42

SEQUENTIAL CIRCUIT BUILDING BLOCKS cont.

From the circuit diagram one can identify two modes of
behaviour:

• S = 0: the contents of the register do not change since each
output is re-circulated via the multiplexer.

• S = 1: Each flip flop gets its input from the one preceeding.
QA gets its input from the SI input.

In other words, each bit is shifted to the RIGHT from QA to
QD. The SI input feeds into the leftmost bit.

QD

QC

QB

QA

SI

C

S

Clr '

P r '

100

In the simulation, the pattern 1011 is SERIALLYshifted into the
register.

After 4 clock pulses the pattern appears in PARALLEL at
outputs QD to QA respectively.

43

SEQUENTIAL CIRCUIT BUILDING BLOCKS cont.

Shift registers are commonly used for parallel to serial and serial
to parallel data conversion.

One can use a multiplexer with additional inputs to fabricate a
UNIVERSAL shift register with 4 modes:

HOLD register contents preserved.

LOAD register contents replaced by data at external inputs.

LEFTdata shifted from QA to QD with new data entering
SHIFT on the left at QA.

RIGHT data shifted from QD to QA with new data entering
SHIFT on the right at QD.

The resulting module might look something like the following:

2

3 15
4 14
5

7

9
10

13

11

1

126

A
B
C
D

RSI

CLK

CLR

1 9 4
S1
S0
LSI

QA
QB
QC
QD

Inputs Next State

Function S1 S0 QA~ QB~ QC~ QD~

HOLD 0 0 QA QB QC QD
S. LEFT 0 1 RSI QA QB QC
S. RIGHT 1 0 QB QC QD LSI
LOAD 1 1 A B C D

44

SEQUENTIAL CIRCUIT BUILDING BLOCKS cont.

COUNTERS

Consider the following binary count sequence:

Q3 Q2 Q1 Q0

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

Is there any pattern to when the outputs
change state?

Q0: Always toggles

Q1: Toggles whenever Q0 = 1

Q2: Toggles whenever Q0 • Q1 = 1

Q3: Toggles whenever Q0 • Q1 • Q0 = 1

Recall the state transition table for a T
(toggle) flip-flop:

T Q(t) Q(t+T)

0 0 0
0 1 1
1 0 1
1 1 0

The Q’s in our counter correspond to
T flip-flops.

45

SEQUENTIAL CIRCUIT BUILDING BLOCKS cont.

Assume that Ti corresponds to the i’th bit of an n-bit counter.

From observation of the counting sequence, we want Qi to
toggle whenever Q0 • Q1 • ... • Q(i-1) = 1.

Thus
Ti = Q0 • Q1 • ... • Q(i-1)

corresponds to the input equation for each of the n flip-flops.

Let’s test the theory by constructing a circuit

J
C
K

S

R

Q

Q

J
C
K

S

R

Q

Q

J
C
K

S

R

Q

Q

0
1

0
1

C

Q2
Q0

Q1

and performing a simulation.

Q2

Q1

Q0

C

200

This is the expected result (notice that the J-K flip-flop is falling-
edge triggered; also recall that T = J = K).

46

SEQUENTIAL CIRCUIT BUILDING BLOCKS cont.

COUNTING BACKWARDS

Q3 Q2 Q1 Q0

1 1 1 1
1 1 1 0
1 1 0 1
1 1 0 0
1 0 1 1
1 0 1 0
1 0 0 1
1 0 0 0
0 1 1 1
0 1 1 0
0 1 0 1
0 1 0 0
0 0 1 1
0 0 1 0
0 0 0 1
0 0 0 0

At left is the binary sequence correspon-
ding to a 4-bit DOWN counter.

What is the rule for state changes?

Q0: Always toggles.

Q1: Toggles when Q0 = 0.

Q2: Toggles when Q0 = Q1 = 0.

Q3: Toggles when Q0 = Q1 = Q0 = 0.

If Ti is the input to the i’th toggle flip-
flop, then

Ti = Q0’ • Q1’ • ... • Q(i-1)’

As before we can test the theory by building and simulating the
corresponding circuit.

47

SEQUENTIAL CIRCUIT BUILDING BLOCKS cont.

3-Bit Down Counter

J
C
K

S

R

Q

Q

J
C
K

S

R

Q

Q

J
C
K

S

R

Q

Q

0
1

0
1

C

Q2
Q0

Q1

Counter Simulation

Q2

Q1

Q0

C

200

The simulation confirms what we expected.

Transformation of the up counter to a down counter involved a
relatively minor change.

This suggest the use of a multiplexer to build a counter that can
selectively count up or down.

In fact we can push this idea further to construct a UNIVERSAL
counter that can count up, count down, hold its current state, or
load a new value from external inputs.

48

SEQUENTIAL CIRCUIT BUILDING BLOCKS cont.

UNIVERSAL COUNTER

D0
D1
D2
D3

CLK

Q0
Q1
Q2
Q3

CLR

COM1
M0

A Carry Out (CO) line signals when the count = 1 1 1 1.

Strategy:

• Design a counter cell that can support each of the required
functions.

We can put together the concepts encountered
thus far to construct a universal counter with the
following functions.

M1 M0 Function

0 0 HOLD current state
0 1 Count up
1 0 Count down
1 1 Q3 Q2 Q1 Q0 <-- D3 D2 D1 D0

• Use multiplexers to select between inputs and toggle
functions.

• Use multiplexers to convert a J-K alternately to a T and D
flip-flop.

• Modularize the design to any counter length.

49

SEQUENTIAL CIRCUIT BUILDING BLOCKS cont.

UNIVERSAL COUNTER CELL

J
C
K

S

R

Q

Q

D3
D2
D1
D0

S0
S1

EN

Q

+5V

C

Lin

Din

Uin

M1

M0

Clr '

Q

Q'

The design uses two multiplexers:

• The 4-input multiplexer at top is used to select among (00)
re-circulating, (01) UP toggle function, (10) DOWN toggle
function, and (11) LOAD input.

• The 2-input multiplexer at bottom converts the J-K flip-flop
to a T for modes (01) and (10) and a D for modes (00) and
(11)

50

SEQUENTIAL CIRCUIT BUILDING BLOCKS cont.

Use the UCC to build the Universal Counter as follows:

+
5

V

C l r '
M1
M0
Din
Uin
Lin
C

Q'
Q

UCC

Clr '
M1
M0
Din
Uin
Lin
C

Q'
Q

UCC

Clr '
M1
M0
Din
Uin
Lin
C

Q'
Q

UCC

Clr '
M1
M0
Din
Uin
Lin
C

Q'
Q

UCC

D3

D2

D1

D0

C

M0

M1

Clr '

Q0

Q1

Q2

Q3

CO

51

SEQUENTIAL CIRCUIT BUILDING BLOCKS cont.

UNIVERSAL COUNTER SIMULATION

The following waveforms illustrate the function of the Universal
Counter in each of its 4 operating modes.

Q0

Q1

Q2

Q3

C

M0

M1

D0

D1

D2

D3

Clr '

200 400 600

Note again that the J-K flip-flop in LogicWorks is falling-edge
triggered.

The first part of the trace shows UP counting followed by a
HOLD, followed by a LOAD (1010), followed by DOWN
counting.

The simulation verifies that the UCC and counter function as
expected.

52

SEQUENTIAL CIRCUIT APPLICATIONS

PROGRAMMABLE COUNTER

The universal counter may be combined with a decoder to
provide counters of variable length.

Example: Modulo 10 counter

+5V

Clr '
C
D0
D1
D2
D3
M0
M1

Q0
Q1
Q2
Q3
CO

UC

0
1 Cl r '

C

O

Q0

Q1

Q2

Q3

O

Q0

Q1

Q2

Q3

Clr '

C

200 400

Note: Although it might be tempting to achieve the same effect
with the Clr’ input, this input is ASYNCHRONOUS. Using it in
this way would violate the timing model.

53

SEQUENTIAL CIRCUIT APPLICATIONS cont.

PARALLEL-SERIAL <--> SERIAL-PARALLEL

universal
shift

registerparallel
data in

m bits

modulo

m

counter

count = m

load

universal
shift

register

serial data out

serial data in

modulo

m

counter

count = m+1
(modulo m)

parallel
data

register

m bits

load

m bits

parallel
data
out

The schematic above shows how counters and shift registers can
be combined to build a parallel-to-serial, serial-to-parallel data
converter.

• Data enters on the left in parallel the transmit shift register
where it is clocked out serially.

• The receive shift register on the right clocks this data in
serially and presents it in parallel to a holding register.

• Data is loaded on both sides every m clock pulses. The
data rate from transmitter to receiver is 1/m times the input
data rate. Modulo-m counters are used for this purpose.

54

SEQUENTIAL CIRCUIT APPLICATIONS cont.

PARALLEL-SERIAL <--> SERIAL-PARALLEL cont.

• Note that data entering the receive shift register from the
transmit shift register will arrive one clock pulse later. This
must be accounted for when decoding the modulo-m
counters.

Timing

Load R

Q0R

Q1R

Q2R

Q3R

Load X

Q0X

Q1X

Q2X

Q3X

Clock

200

The above timing diagram corresponds to m = 4. Thus a new
“packet” is transmitted (and received) every 4 clock pulses.

Note: Be careful with asynchronous inputs (e.g. Preset and
Clear)! These may only be used for initialization purposes.
Any other use requires a more sophisticated timing model.

55

