
Module 2

Combinational Logic
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LOGIC DESIGN

PURPOSE: Implement Boolean functions by means of circuits.

The smallest building blocks are called gates.

CONVENTIONS

Digital circuits operate with two voltage levels of interest:

High
Low

We associate a value and a symbol to these voltages.

Voltage Value Symbol

High True     1
Low False     0

We also say that a signal is asserted (True value, High
voltage) or deasserted  (False value, Low voltage ).
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TWO KINDS OF LOGIC CIRCUITS

Combinatorial Circuits: Output = F (Input)

These circuits have no memory: the output lines depend
only on the inputs. F is a logic function.

Sequential Circuits: Output = S (Input, State)

The circuits have memory: the output lines depend on the 
input and on the State which are values stored in memory.

TRUTH TABLES

How to describe the values of the Outputs for each possible
values of the Inputs? Build a Truth Table.

Ifn  is the number of Inputs there are 2n entries, one for
each combination.

EXAMPLE
Inputs Outputs

A B C D E F
0 0 0 0 0 0
0 0 1 1 0 0
0 1 0 1 0 0
0 1 1 1 1 0
1 0 0 1 0 0
1 0 1 1 1 0
1 1 0 1 1 0
1 1 1 1 0 1
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SWITCHING ELEMENTS

V+

Vi

Vo

1

2

3

Logic circuits are
comprised of switching
elements.  The 3 terminal
device shown at left
behaves as follows:

-if Vin ≥ Vt, switch closed
(terminals 1-3 shorted)

-if Vin < Vt, switch open
(terminals 1-3 open)

The properties of the
switch are such that

0 ≤ Vt ≤ V+

Let Vi represent a binary-valued variable such that logical 1
corresponds to V+ volts and logical 0 corresponds to 0
volts.  The behaviour of the circuit can be expressed by the
following truth table:

Vin Switch State Vout
V+ CLOSED 0
0 OPEN V+

The logical function performed by the circuit is
complement, hence it is referred to as an INVERTER.
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SWITCHING ELEMENTS cont.

In current implementations, switches are fabricated using
TRANSISTORS (BJT, MOS).  For the purposes of this
course we will assume that they behave as ideal switches.

The purpose of the resistor is to PULL UP the output to V+
when the switch is open; the switch serves to PULL
DOWN the output to 0 when activated.

The configuration shown in the previous slide is referred to
as PASSIVE PULL UP / ACTIVE PULL DOWN.  It has
the advantage of being simple, but takes a lot of space in
silicon (resistors have large geometry) and a number of
switching limitations (will become clearer in 304-323).

V+

Vi
Vo

1

2

3

4

5

The configuration shown
at left gets around some
of these problems.  Notice
the bubble on the upper
switch.  It operates as
follows:

-if Vi ≤ Vt, 1-3 shorted

-if Vi ≥ Vt, 1-3 open

i.e., upper switch closed,
bottom switch open and
vice-versa.
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SWITCHING ELEMENTS cont.

The configuration shown in the previous slide using two
switches is referred to as ACTIVE PULL UP / ACTIVE
PULL DOWN.  It is easily verified that it acts as an
inverter.

What happens when we swap pull-up and pull-down
elements?

V+

Vi

Vo

1

2

3

When Vi ≥ Vt, 1-3 shorted

Vo = V+

When Vi ≤ Vt, 1-3 open

Vo = 0

The gate operates as a non-
inverting BUFFER.

The configuration above is referred to as ACTIVE PULL
UP / PASSIVE PULL DOWN.
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SWITCHING ELEMENTS cont.

Analogously to the inverter, we can replace the passive
pull-down element with a complementary switching
element as follows:

V+

Vi
Vo

1

2

3

4

5

It is easily verified that the
circuit acts as a non-
inverting BUFFER.

if Vi ≥ V+, Vo = V+

if Vi ≤ V+, Vo = 0
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SWITCHING ELEMENTS cont.

We can summarize the behaviour of the circuits
encountered thus far using the following table:

Pull-up Pull-down Function
passive active (1) inverter

active (0) active (1) inverter
active (1) passive buffer
active (1) active (0) buffer

where active (1) --> switch closed if Vi ≥ Vt,

active (0) --> switch closed if Vi < Vt.

Vt is referred to as the threshold voltage  of the switch and
is a property of the particular device characteristics along
with the biasing arrangement.

The 4 configurations listed in the table are generally
seperated into 2 classes, depending on whether a passive
element is present or not.  This has strong implications on
the semiconductor fabrication technology used to
implement the circuits.

Within each class there are two configurations, inverters
and buffers, depending on whether the output logic level is
the input level or its complement.

More complex gates are built from these basic structures.
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ELEMENTS IN SERIES

Let’s consider what happens when we connect two
inverters in series as shown below.  At the right of the
circuit is a truth table describing the behaviour of the circuit.

V+

X

Y

Z

X Y Z

0 0 1
0 1 1
1 0 1
1 1 0

The above table is
easily verified by
noting that the only
condition under which
Z can be 0 is for
BOTH switches to be
active, i.e. X=1 and
Y=1.

The circuit corresponds to a 2-
input NAND gate.  Larger NAND gates can be fabricated
by placing additional active (1) switches in series (up to the
practical limit determined by electronic circuit
considerations).
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ELEMENTS IN SERIES cont.

Recall that an inverter is turned into a non-inverting buffer
by transposing the passive pull-up with the active (1) pull-
down.  This suggests a way of converting a NAND gate
into a AND gate.

V+

X

Y

Z

X Y Z

0 0 0
0 1 0
1 0 0
1 1 1

The above truth table
is easily verified.  By
default, Z = 0 if either
switch is off.  Hence
the only way in which
Z = 1 is if BOTH X
and Y are set to 1.

This confirms our supposition that transposing pull-up and
pull-down elements negates the initial function.  As with the
NAND gate shown previously, multiple inputs are
accomodated by placing additonal switch elements in series.
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ELEMENTS IN SERIES cont.

The case for series connection of elements with an active
pull-up or pull-down is slightly more complex since a
switch can have only a single control input.

V+

X

Y

Z

The circuit corresponds to a NAND gate with the additional
features of smaller geometry (i.e. Size) and better switching
characteristics.

As before, we can
determine the function
of the circuit at left by
exhaustively exploring
its truth table:

X Y Z

0 0 1
0 1 1
1 0 1
1 1 0

If either X or Y is 0, one
of the two series
elements is open, and
one of the parallel
elements closed so that
Z = 1.  The only case in
which Z = 0 is if both X
and Y are 1.
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ELEMENTS IN SERIES cont.

We would expect that swapping the pull-up and pull-down
structures should result in an AND gate.

V+

X

Y

Z

We can test this
hypothesis by verifying
the truth table
corresponding to the
circuit.

X Y Z

0 0 0
0 1 0
1 0 0
1 1 1

A 0 at X or Y opens the
path to V+ and shorts the
path to ground.  Only X
and Y both 1 will set Z to
1.

Hence the circuit corresponds to an AND gate.  To increase
the number of inputs, additional pull-ups are connected in
series and pull-downs in parallel.
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ELEMENTS IN PARALLEL

We now repeat our investigation for switching elements
connected in parallel.  Consider what happens when two
inverters are connected in parallel as shown below.

V+

X

Y

Z

The truth table is determined
(as before) by evaluating the
circuit output for each input
combination.

X Y Z

0 0 1
0 1 0
1 0 0
1 1 0

The only possible way for Z
to be 1 is for both switches
to be off.

It is easily verified from the truth table that the circuit
corresponds to a NOR gate.

This is not entirely unexpected and is related to the principle
of DUALITY which we will study shortly.
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ELEMENTS IN PARALLEL cont.

Again, swapping the pull-up and pull-down elements should
change the sense of the gate, i.e., from NOR to OR.

V+

X

Y

Z

Evaluating the circuit
for each possible input
combination yields the
following truth table.

X Y Z

0 0 0
0 1 1
1 0 1
1 1 1

The only possible case
for a 0 output is for both
switches to be off. 
Otherwise the output is
pulled high if either or
both switches are on.

The circuit corresponds to an OR gate as we suspected.
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ELEMENTS IN PARALLEL cont.

Parallel connection of elements with an active pull-up or
pull down involves replacing the passive element with
active (0) switching elements in series.  First, consider
the case where the active (0) elements are on top.

V+

X

Y

Z

The truth table cor-
responding to this circuit
is determined by eval-
uating the response to
each of the 4 possible
input combinations.

X Y Z

0 0 1
0 1 0
1 0 0
1 1 0

A 1 on either X or Y
open circuits the path to
V+ and short circuits the
path to ground.

A 0 on both X and Y open circuits both of the lower
switches and short circuits the path to V+.  From the truth
table it can be seen that the circuit corresponds to a NOR
gate.

15



ELEMENTS IN PARALLEL cont.

Finally, to obtain a positive OR gate using both active pull-
up and pull-down elements, we swap the upper and lower
elements as follows.

V+

X

Y

Z

Using the same
procedure as before,
we obtain the
following truth table
for the circuit.

X Y Z

0 0 0
0 1 1
1 0 1
1 1 1

A 1 on X or Y open
circuits the bottom leg
and closes one of the
two switches in
parallel, resulting

in an output of 1.  The only combination that can result in a
0 output is for both inputs to be 0, hence the circuit is a
positive OR gate.
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BOOLEAN ALGEBRA

Logic functions, which we have represented thus far using
truth tables, can also be expressed in terms of logic
equations.  This gives rise to Boolean Algebra (after the
mathematician, 1815-1864).   One can take two views:

To a mathematician: A ring with multiplicative identity in
which every element is an idempotent. (a times a = a)

To a computer engineer: A notation to describe logical
relationships between two-valued variables. (c = f(a,b))

All variables have the values  0 or  1. There are three
operators defined as follows:

A B NOT A NOT B A+B A•B
0 0 1 1 0 0
0 1 1 0 1 0
1 0 0 1 1 0
1 1 0 0 1 1

The three operators are also referred to as

A + B LOGICAL SUM
A • B LOGICAL PRODUCT
NOT LOGICAL NEGATION

Boolean algebra is governed by rules and axioms which
enable logic equations to be manipulated.
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PROPERTIES & IDENTITIES

Properties of  0 and  1.

• Identity law: A + 0 = A    and   A • 1 = A

Proof by enumeration:

If A =  0,  0 + 0 =  0.  Now if A  =  1,  1 + 0 =  1

If A =  0,  0 • 1 =  0.  Now if A  =  1,  1 • 1 =  1

• Zero and One laws: A + 1 = 1 and A • 0 =  0

Proof by enumeration:

If A =  0,  0 + 1 = 1.   Now if A  =  1,  1 + 1 =  1.

If A =  0,  0 • 0 =  0.  Now if A  =  1,  1 • 0 = 0.

A  + A =  1 and  A • A  =  0
• Inverse laws: 

• Idempotence:  A + A  = A   and  A • A  = A

• Commutative laws: A + B = B + A  and A • B = B • A
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PROPERTIES & IDENTITIES: cont.

• Associative Laws:   A + (B + C )  = (A + B ) + C
   A • (B • C )  = (A • B ) • C

• Distributive Laws:  A • (B + C ) = (A • B ) + (A • C )
  A + (B • C ) = (A + B ) • (A + C )

• Absorption Laws:  A + (A • B ) = A
                               A • (A +B ) = A

• DeMorgan’s Laws:
A + B  = A  •  B 

A • B   = A  + B 

Note: All the above properties come in pairs. Each is
formally obtained from its dual by:

1. Exchanging the operators • and +

2. Exchanging the constants  0 and  1

How this duality property can be proved?
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CANONICAL FORMS

Two fundamental algebraic forms to describe a truth table:

° MINTERM or SUM OF PRODUCTS form,
° MAXTERM or PRODUCT OF SUMS form.

Consider the truth table for a full-adder:

Cin Ai Bi Sum Cout
0 0 0 0 0 0
1 0 0 1 1 0
2 0 1 0 1 0
3 0 1 1 0 1
4 1 0 0 1 0
5 1 0 1 0 1
6 1 1 0 0 1
7 1 1 1 1 1

A minterm is a CONJUNCTION over the input variables
([Cin,Ai,Bi] in this case) that is true whenever the
corresponding output is true.

For example, notice that Sum is true when
[Cin,Ai,Bi]=[0,0,1].  

Cin   Ai  Bi .

The corresponding logical
expression would then be   
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CANONICAL FORMS cont.

Using this approach we can completely specify the logical
functions for Sum and Cout by taking the logical sum of
each minterm as follows:

 Sum =   Cin   Ai  Bi +   Cin  Ai  Bi   +  Cin Ai  Bi   +  Cin Ai Bi ,

Cout =   Cin  Ai Bi +   Cin Ai  Bi +   Cin Ai Bi   +   Cin Ai Bi .

This form is refered to as a SUM OF PRODUCTS, often

abbreviated as Σ Π .  

A maxterm is a DISJUNCTION over the input variables
that is false whenever the corresponding output is false.

Again, notice that Sum is false when [Cin,Ai,Bi]=[0,0,0]. 
The corresponding logical expression would be 
Cin +  Ai +  Bi .  Using this approach we can write
expressions for Sum and Cout by taking the logical product
of each maxterm as follows:

Sum = ( Ci + Ai + Bi) ( Cin + Ai + Bi ) ( Cin + Ai + Bi ) ( Cin + Ai + Bi)

Cout = ( Cin + Ai + Bi) ( Cin + Ai + Bi ) ( Cin + Ai + Bi) ( Cin + Ai + Bi) .

Π Σ .  This is referred to as a PRODUCT OF SUMS, 

If the SUM OF PRODUCTS and PRODUCT OF SUMS
forms both describe the same function, then we should be
able to prove this algebraically.
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CANONICAL FORMS cont.

Using the expression for Sum as an example, start by
writing an expression for its complement as sum of
products:

Sum =   Cin   Ai   Bi   +   Cin  Ai Bi  +  Cin Ai  Bi +  Cin Ai   Bi

Now apply de Morgan’s law to the right hand side:

Sum   =  Cin + Ai + Bi +    Cin + Ai + Bi   +     Cin + Ai + Bi

              +     Cin + Ai + Bi

Apply de Morgan one more time:

Sum =   ( Cin + Ai + Bi) ( Cin + Ai + Bi ) ( Cin + Ai + Bi ) 

             ( Cin + Ai + Bi) 

Which is exactly what is required.

So, given a truth table, we now have a mechanism for
expressing it as a logical function in one of two canonical
forms.

But what about its implementation as an electronic circuit?
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CANONICAL FORMS TO LOGIC CIRCUITS

Given that we can transform a truth table into a logic
equation, how do we transform the equation into an
equivalent logic circuit?

First, consider the expression we obtained earlier for the
sum function expressed as a Sum of Products:

 Sum = Cin   Ai  Bi + Cin  Ai  Bi + Cin Ai  Bi + Cin Ai Bi
Each product corresponds to an AND gate, and the sum
which combines them together to an OR gate.  A direct
circuit implementation might look as follows.

Cin

A i

Bi

Sum

Notice how the expression maps DIRECTLY to the logic
circuit implementation.

Observe: the complexity of the resulting circuit is directly
related to the complexity of the expression.
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CANONICAL FORMS TO LOGIC CIRCUITS cont.

Next, consider the Product of Sums expression we obtained
earlier:

Sum =   ( Cin + Ai + Bi) ( Cin + Ai + Bi ) ( Cin + Ai + Bi ) 

             ( Cin + Ai + Bi) 

A direct implementation of this expression results in the
following circuit:

Cin

A i

Bi

Sum

Again, the complexity of the resulting circuit is directly
related to the complexity of the product-of-sums expression.

If we could somehow MINIMIZE these expressions, the
result would be a SIMPLER CIRCUIT.

This process is referred to as LOGIC MINIMIZATION.
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TRANSFORMATION OF FORMS

In earlier notes we observed how logic gates could be
negated by swapping pull-up and pull-down elements.

While this is possible in theory, technological constraints
often make this impossible in practice.  One common family
of logic, TRANSISTOR-TRANSISTOR LOGIC (TTL), is
based entirely on inverter structures.  AND and OR gates
are fabricated by cascading NAND and NOR gates with
inverters.  This adds additional switching delay, so circuits
composed of NAND and NOR gates are preferred.

We can achieve a suitable transformation by applying De
Morgan’s law to our canonical forms.

Example:

 Sum = Cin   Ai  Bi + Cin  Ai  Bi + Cin Ai  Bi + Cin Ai Bi

1. Negate terms 
2. Change +’s to •’s  
3. Negate expression

Sum = � �   Cin   Ai  Bi • Cin  Ai  Bi • Cin Ai  Bi • Cin Ai Bi �
�

The resulting expression contains 4 NAND terms combined
together in a NAND.

We refer to this as NAND-NAND logic.
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TRANSFORMATION OF FORMS: cont.

Compare the AND-OR and NAND-NAND circuits:

Cin

A i

Bi

Sum

AND-OR

Cin

A i

Bi

Sum

NAND-NAND

The NAND-NAND has about half the propagation delay of
the AND-OR (excluding the inverters) for TTL.
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TRANSFORMATION OF FORMS: cont.

We can apply De Morgan’s law to the  Π Σ   form as well:

Sum =   ( Cin + Ai + Bi) ( Cin + Ai + Bi ) ( Cin + Ai + Bi ) 

             ( Cin + Ai + Bi) 

Applying De Morgan we obtain:

Sum =   [ ( Cin + Ai + Bi) + ( Cin + Ai + Bi ) + ( Cin + Ai + Bi ) 

             + ( Cin + Ai + Bi) ] ' 

The resulting expression contains 4 NOR gates combined
together in a NOR with the following equivalent circuit.

Cin

A i

Bi

Sum

NOR-NOR

As with NAND-NAND, propagation delay is reduced.
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LOGIC MINIMIZATION

The simplification of logic equations to minimal form is
referred to as LOGIC MINIMIZATION.  This has a direct
impact on the complexity of the resulting circuit
implementation.

Consider the following truth table

A B C D X
0 0 0 0 0 1
1 0 0 0 1 0
2 0 0 1 0 0
3 0 0 1 1 1
4 0 1 0 0 1
5 0 1 0 1 0
6 0 1 1 0 0
7 0 1 1 1 0
8 1 0 0 0 1
9 1 0 0 1 0
10 1 0 1 0 1
11 1 0 1 1 1
12 1 1 0 0 1
13 1 1 0 1 0
14 1 1 1 0 1
15 1 1 1 1 0

The sum of products corresponding to this table is

X =   A B C D   +     A B CD +     A B C D   +    A B C D 

   +    A B C D   +    A B CD +    AB C D   +    ABC D 
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LOGIC MINIMIZATION: cont.

Algebraic minimization strategy: factor into terms
that differ in 1 variable.  Repeat this procedure until no
further simplification is possible.

1 .  X =   A C D ( B + B )   +  A C D ( B + B )   + 

              B CD( A + A ) +  AC D ( B + B ) 

     X =   A C D   +  A C D   +   B CD +  AC D 

Observe that the second term may be combined with either
the first or last term.  Idempotence says that any of the
terms in the above expression may be replicated without
changing anything, so...

2 .  X =   A C D   +  A C D   +   B CD +  AC D   +  A C D 

         =   C D ( A + A )   +   B CD +  A D ( C + C ) 

         =   C D   +   B CD +  A D 

Now instead of requiring 8 4-input AND gates and 1 8-
input OR gate, the circuit has been reduced to a total of 4
gates: 1 3-input OR, 1 3-input AND, and 2 2-input ANDs
(neglecting the inverters again).

These manipulations are not always obvious!  For this
reason a convenient graphical method has been developed -
Karnaugh Maps.
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KARNAUGH MAPS

Another more compact way of representing the truth table
is to use a KARNAUGH MAP.

CD

AB

0 0 0 1 1 01 1

0 0

0 1

1 0

1 1

X

1

1

1

1

1

1

1 1

0 0

0 0 0

0 0

0

Notice how each truth table entry is represented by a
corresponding cell in the Karnaugh map.  

Also pay close attention to the ordering!  Each cell
differs in exactly 1 variable when moving in a vertial
or horizontal direction.

The map also wraps around the edges (bottom row to top
row, leftmost column to rightmost column).

Let’s return to the minimization example shown earlier and
examine its relationship to the map shown above.
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KARNAUGH MAPS: cont.

CD

AB

0 0 0 1 1 01 1

0 0

0 1

1 0

1 1

X

1

1

1

1

1

1

1 1

Notice the 3 groups circled in different colors.  What is their
significance?

Answer: they are comprised of minterms that DIFFER
ONLY IN A SINGLE VARIABLE.

Consider the group circled in red:  0000 0100 1100 1000.

In going from top to bottom (left to right above), each
successive minterm differs by only a single bit.

The same is true for the blue group: 1100 1000 1010 1110

And also for the green: 0011 1011
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KARNAUGH MAPS: cont.

CD

AB

0 0 0 1 1 01 1

0 0

0 1

1 0

1 1

X

1

1

1

1

1

1

1 1

The terms
circled in red (first column) correspond to the following
minterm expression:

A B C D   +   A B C D   +  AB C D   +  A B C D 

We already know that this reduces to C D  - the map
simply makes this relationship explicit.

Notice that the C D  term is common to each cell and that
A and B each take on values of 0 and 1.
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KARNAUGH MAPS: cont.

In general, for an n-bit minterm:

° A group of 2 minterms can be combined if they have n-1
variables in common - 1 variable is eliminated.

° A group of 4 minterms can be combined if they have n-2
variables in common - 2 variables are eliminated.

° A group of 8 variables can be combined if they have n-3
variables in common - 3 variables are elimated and so on.
So far we’ve identified 1 group of 4 ones.  Are there any
others?  Yes, the terms circled in blue corresponding to the
following minterm expression:

A B C D   +   A B C D   +  ABC D   +  A B C D 

Notice that the first two terms also appear in the previous
expression.  That’s OK, terms can be replicated as needed
(idempotence).

Again from the earlier algebraic manipulation we know that
this reduces to A D .  This can be observed directly from
the Karnaugh map - each term has A D  in common with B
and C taking on 0 and 1.
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KARNAUGH MAPS: cont.

To complete the minimization procedure we have to
account for each 1 that appears in the map.  At this point
the terms A B CD and A B CD are left.  Notice that they
differ only in A - the green circle shown on the map -
which reduces to B CD.

CD

AB

0 0 0 1 1 01 1

0 0

0 1

1 0

1 1

X

1

1

1

1

1

1

1 1

Combining the results we obtain the following minimal
expression for X:

X =   C D   +   B CD +  A D . 
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KARNAUGH MAPS: cont.

As you might suspect (principal of duality) the Karnaugh
map probably has something to do with maxterms as well.

CD

AB

0 0 0 1 1 01 1

0 0

0 1

1 0

1 1

X

0

0

0

0

0

0

0

0

First consider the terms circled in blue (the column under
01).  The maxterm expression is

( A + B + C + D )   ( A + B + C + D )   ( A + B + C + D ) 

( A + B + C + D ) 

We would probably suspect that variables A and B can be
eliminated, i.e., that the minimal expression corresponding
to this product of sums is ( C + D ) .  
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KARNAUGH MAPS: cont.

There’s one way to find out - simplify the expression
algebraically.  Here’s a really neat trick.

Take the dual form, i.e.,

Dual{ ( A + B + C + D )   ( A + B + C + D ) 

             ( A + B + C + D )   ( A + B + C + D ) } 

=   ( ABC D ) + ( A B C D ) + ( A B C D ) + ( A BC D ) 

=     ( AC D ) ( B + B )   +   ( A C D ) ( B + B ) 

=   ( AC D )   +   ( A C D ) 

=   ( C D ) ( A + A )   =  C D 

This gives us another expression that we can simplify much
more easily.  IT IS NOT EQUIVALENT.
To convert back we need to take the dual form of the
result.

Dual{ C D }   =   ( C +   D ) 
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KARNAUGH MAPS: cont.

CD

AB

0 0 0 1 1 01 1

0 0

0 1

1 0

1 1

X

0

0

0

0

0

0

0

0

So the same properties of variable elimination also hold for
maxterms.  Let’s complete the procedure by enumerating
the remaining 0’s.

For the term circled in green (center of the map)

( B + D ) 

and the remaining term circled in red

( A + C + D ) 
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KARNAUGH MAPS: cont.

CD

AB

0 0 0 1 1 01 1

0 0

0 1

1 0

1 1

X

0

0

0

0

0

0

0

0

Combining all the maxterms, the minimal expression for X
is

For comparison, the minterm expression for X is

Σ Π   =   C D   +   B CD +  A D . 

Π Σ   =   ( C + D )   ( B + D )   ( A + C + D ) 
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KARNAUGH MAPS: cont.

Circuit Implementations

We can use de Morgan’s law to convert each of the
canonical forms into NAND-NAND and NOR-NOR
representations respectively.

Σ Π   =   C D   +   B CD +  A D 

       =   C D A   B CD A  A D 

          NAND-NAND

A

C'
D'

D'

B'
C
D

X

Π Σ   =   ( C + D )   ( B + D )   ( A + C + D ) 

      =   ( C + D ) + ( B + D ) + ( A + C + D ) 

C

B'
D'

D'

A
C'
D

NOR-NOR
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DON’T CARES

Consider the truth table shown below:

C B A X

0 0 0 d
0 0 1

   

00
   

01
   

10
   

11

   

1

   

0   

C

   

BA

   

d
   

d
   

d
   

1

   

1
   

0
   

0
   

0

0
0 1 0 1
0 1 1 d
1 0 0 1
1 0 1 0
1 1 0 d
1 1 1 0

The d’s in the output corres-
pond to “don’t cares”, i.e.,
values for which the output is
permitted to be either 0 or 1.

Since they can be taken either
way, they are usually selected
so that the simplest function is
obtained.

Consider the Karnaugh map for
this truth table.

Notice how the don’t cares are
used to obtain a minimal expr-
ession.

The d’s corresponding to min-
terms 000 & 110 are treated as
1’s, and the remaining minterm
as 0.  

This corresponds to X = A , instead of X = C B A + C B A 
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COMMON BUILDING BLOCKS

Combinational logic is often defined in terms of standard
building blocks ranging from simple gates to complex
functions such as ALU’s (arithmetic and logical units).

The Basic Gates:

• AND Gate A • B

• NAND Gate A • B

• OR Gate A +  B

• NOR Gate A   +  B

• NOT Gate A 

• XOR Gate A B   +   A B 

• XNOR Gate AB +   A B 
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COMMON BUILDING BLOCKS: cont.

The Multiplexer is a routing switch that selects 1 of n lines
for output depending on the state of a set of control inputs. 
The case for n=2 is shown below.

S A B X
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

We can synthesize this circuit using formal methods (e.g.
Karnaugh Map), but the logic equation is simple enough to
infer from inspection:

S

A

B

X

X =   S A +  S B

S

A
B X

Routing
Switch

(Multiplexer)

S

AB
00 01 11 10

0
1
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COMMON BUILDING BLOCKS: cont.

Sometimes an additional control line is added to the basic
multiplexer as follows:

S

A

B
X

E

The enable (E) line is used
to synchronize changes at
X with an external timing
signal such as a clock line.

Larger multiplexers can be formed by cascading smaller
ones as shown below (e.g. binary trees).

A
B

Routing
Switch

(Multiplexer)

C
D

S0

Routing
Switch

(Multiplexer)

Routing
Switch

(Multiplexer)
X

S1
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COMMON BUILDING BLOCKS: cont.

Propagation Delay:

Is defined as the interval between the application of the
input signal and the point at which the output produces a
stable response.

Consider the case of the 2-input multiplexer.  The
propagation delay is exactly 2 gate delays (assuming S is
stable).

The 4-input multiplexer, made from two 2-input
multiplexers, adds an additional 2 units of delay.

One can fabricate an 8-input multiplexer, by combining two
4-input multiplexers using a 2-input nultiplexers.

The structure corresponds to a BINARY TREE, where the
depth of the tree is given as:

Depth =  Log2 ( #  Inputs) 

Each level of the tree corresponds to the propagation delay
of a 2-input multiplexer, i.e., 2 gate delays.

Hence, a 256-input multiplexer built in this fashion would
have a propagation delay of 16 gate delays.
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COMMON BUILDING BLOCKS: cont.

2’S COMPLEMENT OVERFLOW DEECTOR

Recall that overflow in 2’s complement addition can be
determined from the sign (msb) bits of the two arguments
and the resulting sum.

Ah Bh ∑h OF
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 0

   

00
   

01
   

10
   

11

   

1

   

0

   

B∑

   

A

   

1
   

1

   

00
   

01
   

10
   

11

   

1

   

0

   

B∑

   

A
   

0
   

0
   

0
   

0

   

0
   

0

The resulting minterm and maxterm expressions are,
respectively:

OF =   A B ∑ +  AB ∑ 

=   ( B + ∑ )   ( A + ∑ )   ( A + B ) NAND-NAND

NOR-NOR
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COMMON BUILDING BLOCKS: cont.

DECODERS

As the name implies, a decoder takes an n-bit input and
produces 2n outputs, i.e., a single output line is true for each
input combination.  The table shown below corresponds to
a 3-bit decoder.

Inputs Outputs

S2 S1 S0 Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0

0 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 1 0 0

0 1 1 0 0 0 0 1 0 0 0

1 0 0 0 0 0 1 0 0 0 0

1 0 1 0 0 1 0 0 0 0 0

1 1 0 0 1 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0

Q7
Q6
Q5
Q4
Q3
Q2
Q1
Q0

S0
S1
S2

EN

The circuit shown at left corresponds to the
truth table shown above with one minor
exception - the enable input. 

When enable is not asserted, i.e., logic 1 in 
this case (notice the inversion bubble),
outputs are all 0.  Otherwise the decoder

functions according to the truth
table shown

above.
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COMMON BUILDING BLOCKS: cont.

A Better Multiplexer

Q7
Q6
Q5
Q4
Q3
Q2
Q1
Q0

S0
S1
S2

EN

D7

D6

D5

D4

D3

D2

D1

D0

S2

S1

S0

Q

E
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COMMON BUILDING BLOCKS: cont.

ENCODERS

The encoder performs the opposite function of the decoder,
it takes n inputs and produces m outputs,
where n = 2 m . 

Inputs Outputs
I7 I6 I5 I4 I3 I2 I1 Q2 Q1 Q0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 1 0 0 1 0
0 0 0 0 1 0 0 0 1 1
0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 0 1 0 1
0 1 0 0 0 0 0 1 1 0
1 0 0 0 0 0 0 1 1 1

Notice that the truth table does NOT contain 2 n  rows!
The implicit assumption is that only 1 input can be asserted
at any time.  Hence the 3 logic equations corresponding to
Q2, Q1, and Q0 are as follows:

Q 2 =  I4 + I 5 + I 6 + I 7 

Q 1 = I 2 + I 3 + I 6 + I 7 

Q 0 = I 1 + I 3 + I 5 + I 7 
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COMMON BUILDING BLOCKS: cont.

COMPARATORS

A single-bit comparator takes 2 inputs A and B and asserts
one of three outputs depending on whether A > B, A = B,
or A < B, i.e.,

G  = 1 if and only A  > B
E  = 1 if and only A  = B
L  = 1 if and only A  < B

Truth table:

Inputs Outputs
A B G E L
0 0 0 1 0
0 1 0 0 1
1 0 1 0 0
1 1 0 1 0

Logic equations

B
G

A
L

E

 
G =  A A B 

L =   A A B 

E =   A A B   +  A A B 

Can be implemented with an
AND gate, two inverters and
an XNOR gate.
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COMMON BUILDING BLOCKS: cont.

FULL ADDER

Ci Ai Bi ∑ Co
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

The truth table at left corr-
esponds to a FULL ADDER.

Using standard techniques, we
can derive a logic function
describing this table in either of
the two canonical forms.

Notice that the expression for ∑
does not simplify in either
canonical form.

00 01 1011

1
0

00 01 1011

1
0

∑ ∑

1 1
1 1

0 0
0 0

Ai Bi Ai Bi

Ci Ci

∑ = Ci Ai Bi + CiAiBi + Ci Ai Bi + Ci Ai Bi

= ( Ci + Ai + Bi) ( Ci + Ai + Bi ) ( Ci + Ai + Bi ) ( Ci + Ai + Bi) 

00 01 1011

1
0

00 01 1011

1
0

Co Co

1
1 1 1

0 0 0
0

Ci Ci

Ai Bi Ai Bi

Co = AiBi + CiBi + CiAi

= ( Ai + Bi) ( Ci + Ai) ( Ci + Bi) 
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COMMON BUILDING BLOCKS: cont.

Word Width Full Adders

∑0C0∑1C1Cn-2∑n-2

A0 B0A1 B1An-2 Bn-2
0

An-1 Bn-1

Cn-1∑n-1

An n-bit full-adder can be fabricated by cascading together
n full-adder modules as shown above.

What are the PROPAGATION DELAYS corresponding to
∑ and Co?

• 3 gate delays for ∑ (negating inputs adds 1 delay)

• 2 gate delays for Co (there are no inverted inputs)

What is the propagation delay for the n-bit adder?

• (n-1) x 2 gate delays to propagate carry to the last
full adder in the chain +

• 3 gate delays to produce the final sum

Total = 2n + 1 gate delays
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EXAMPLE: 7 SEGMENT DISPLAY

These are common in counters, calculators, digital watches,
computer consoles, etc.

a

c

b

d

e

f

g

a
b
c
d
e
f
g

common

Principle: Seven light
emitting diodes (lamps)
seperately fed, with
common return lead.

By lighting up different
combinations of the 7
segments, numerals and
some letters can be
produced.

The segments to be lit have no clear mathematical
relationship to numbers.  They are related to numerals, so a
specially designed driving circuit is required.

Input Code Oct Display Code
B2 B1 B0 al a b c d e f g
0 0 0 0 1 1 1 1 1 1 0
0 0 1 1 0 1 1 0 0 0 0
0 1 0 2 1 1 0 1 1 0 1
0 1 1 3 1 1 1 1 0 0 1
1 0 0 4 0 1 1 0 0 1 1
1 0 1 5 1 0 1 1 0 1 1
1 1 0 6 1 0 1 1 1 1 1
1 1 1 7 1 1 1 0 0 0 0
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EXAMPLE: 7 SEGMENT DISPLAY

Design Approach:

Using standard techniques we can derive 7 logic equations
corresponding to the display code shown in the truth table.
A more straightforward approach is to use a 3-to-8 decoder
as shown in the diagram below.

a

g
dot

Q7
Q6
Q5
Q4
Q3
Q2
Q1
Q0

S0
S1
S2

EN

+5V

0 1 2 3
4 5 6 7
8 9 A B
C D E F

A 3-to-8 decoder is used to assert each octal code.  Each
segment combines 1’s (OR) or 0’s (NOR), depending on
which are fewer.

e.g. segment a is OFF for 1 & 4, therefore a = NOR(1,4)
 segment e is ON for 0,2,6, therefore e = OR(0,2,6)
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DIGITAL LOGIC TECHNOLOGIES

Transistor-Transistor Logic (TTL)

Introduced early 70’s, low-medium density, used for
“glue logic”, still used to define functional building blocks
in more modern technologies.
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DIGITAL LOGIC TECHNOLOGIES cont.

Programmable Array Logic (PALs)
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DIGITAL LOGIC TECHNOLOGIES cont.

The PAL shown on the previous slide consists of a fixed
number of multiple-input AND gates combined through OR
terms.  Connections to each AND are programmable, so
there is considerable flexibility in the range of logic
functions that can be implemented.  The only limitation is
the fixed number of minterms.

The Programmable Logic Array (PLA) shown below is a
more general structure than the PAL.  It is comprised of an
AND plane and an OR plane.  The size of the AND array is
equal to the number of inputs, while the size of the OR
array is equal to the number of terms times the number of
outputs.  In a PLA connections are programmable in BOTH
the AND array and the OR array.

AND ARRAY

OR ARRAY

inputs

outputs

minterms
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DIGITAL LOGIC TECHNOLOGIES cont.

EXAMPLE:

Consider the following truth table

Inputs Outputs
A B C D E F
 0  0  0  0  0  0
 0  0  1  1  0  0
 0  1  0  1  0  0
 0  1  1  1  1  0
 1  0  0  1  0  0
 1  0  1  1  1  0
 1  1  0  1  1  0
 1  1  1  1  0  1

There are seven unique 

A
B
C

D

E

F

terms with at least one true value in
the outputs, so there
will be seven columns
in the AND plane. The
number of rows in the
AND plane is three
since there are three
inputs. There are three
rows in the OR plane
since there are three
outputs. Once
programmed, the PLA
has the circuit at right.
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DIGITAL LOGIC TECHNOLOGIES cont.

READ-ONLY MEMORY (ROM)

Another form of structured logic that can be used to
implement logic functions is the read-only memory. It has a
fixed set of locations usually set at creation time that can be
addressed and read. There are also programmable ROM’s
or PROM’s, and some that can be erased and
reprogrammed called EPROM’s.

A ROM has N inputs (address lines) which can be used to
specify 2 N  memory locations.  Each location is M bits wide,
hence the output (data lines) has M lines.

 A ROM can encode a logic function directly from the truth
table with N  inputs and M  outputs. Each entry stores a
row of the truth table.

ROMaddress lines 
(input)

data lines 
(output)

ROMs are fully decoded: one full word  for each possible
input. So, a ROM always contains more entries than a PLA.
As the number of inputs grows, the number of entries
grows exponent-ially. PLA’s grow much slower with the
number or terms. ROM’s are however sometimes
convenient when the logic function may change but the
number of input and outputs remains fixed.
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Lookup Tables

Multiplexers as combinational logic

CABSCo
00000
00110
01010
01101
10010
10101
11001
11111
�

Ful l  adder desi gn usi ng two 8- i nput mul ti pl exers

Observe:  mul ti pl exer  i nputs are the output
col umns of the tr uth tabl e.

S Co

D0
D1
D2
D3
D4
D5
D6
D7
S0
S1
S2
EN

Q

D0
D1
D2
D3
D4
D5
D6
D7
S0
S1
S2
EN

Q

+5V +5V

1 1

0
1

0
1

0
1

BB

B

AAA
CC

C
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Multiplexers as combinational logic: continued

Ful l  adder desi gn usi ng two 4- i nput mul ti pl exers

S

Co1 1
D3
D2
D1
D0

S0
S1
EN

Q
D3
D2
D1
D0

S0
S1
EN

Q

+5
V

B
B

B' AA
CC
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Direct implementation using ROM

CABSCo
00000
00110
01010
01101
10010
10101
11001
11111
�

Ful l  adder desi gn usi ng two 8- i nput mul ti pl exers

S

Co

0
1

0
1

0
1

IN0
IN1
IN2

OUT0
OUT1

FAROM
1

1
B

B

AA
C

C

Inputs C, A, and B are used to form the 3-bit address to the PROM shown above, hence each
input indexes a particular memory cell.

The cells are correspondingly programmed with the outputs of the truth table.

If you used LogicWorks to generate a PROM, the entries to this device would be, from lowest to
highest address:  0, 2, 2, 1, 2, 1, 1, 3.




