
Data Representation in Digital
Computers

The material presented herein is excerpted from

a series of lecture slides originally prepared by

David Lowther and Peet Silvester for their text-

book Computer Engineering. The material has

been adapted by Frank Ferrie to fit the current

implementation of course 304-221.
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Binary Numbers

The common representation in most digital

computers. Only 2 symbols are required! Con-

sider the following example:

1 1 0 1 0 1 1 1 1 0 0 1

1101011110012 =

= 1 × 211 + 1 × 210 + 0 × 29

+ 1 × 28 + 0 × 27 + 1 × 26

+ 1 × 25 + 1 × 24 + 1 × 23

+ 0 × 22 + 0 × 21 + 1 × 20

= 344910
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Binary Numbers: cont.

While binary numbers are fine for computers,

humans prefer more compact representations.

This can be accomplished by extending our

repetoire of symbols. Converting to octal, i.e.,

Base-8 is easy:

1 1 0 1 0 1 1 1 1 0 0 1
6 5 7 1

= (1 × 22 + 1 × 21 + 0 × 20) ×29 = 6 × (83)
+ (1 × 22 + 0 × 21 + 1 × 20) ×26 = 5 × (82)
+ (1 × 22 + 1 × 21 + 1 × 20) ×23 = 7 × (81)
+ (0 × 22 + 0 × 21 + 1 × 20) ×20 = 1 × (80)

= 65718

Notice how the above factoring is equivalent

seperating binary digits into groups of 3, i.e.,

28.
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Binary Numbers: cont.

Conversion to hexadecimal notation is accom-

pished by factoring the numbers into powers

of 16. This can be accomplished be seperat-

ing binary digits into groups of 4 as follows.

1 1 0 1 0 1 1 1 1 0 0 1
D 7 9

= (1 × 23 + 1 × 22 + 0 × 21 + 1 × 20) ×28

+ (0 × 23 + 1 × 22 + 1 × 21 + 1 × 20) ×24

+ (1 × 23 + 0 × 22 + 0 × 21 + 1 × 20) ×20

= D × (162)
+ 7 × (161)
+ 9 × (160)

(A = 10, B = 11, C = 12, D = 13, E = 14,

F = 15)
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Base Conversion

Decimal to binary, i.e., N10 → N2, for some
number N .

Write N as an even number plus 0 or 1 as
appropriate:

N = Q(1) ∗ 2 + R(1)

Observe that the first term above is even and
the second is odd. Notice that the second is
also in N2.

Similarly, write

Q(1) = Q(2) ∗ 2 + R(2)

N = (Q(2) ∗ 2 + R(2)) ∗ 2 + R(1)
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Base Conversion: cont.

We can continue expanding N recursively:

N = (Q(2) ∗ 2 + R(2)) ∗ 2 + R(1)

= ((Q(3) ∗ 2 + R(3)) ∗ 2 + R(2)) ∗ 2 + R(1)

= (((Q(4) ∗ 2 + R(4)) ∗ 2 + R(3)) ∗ 2 + R(2))

∗2 + R(1)

Re-writing back to front . . .

N = R(1) + R(2) ∗ 2 + R(3) ∗ 2 ∗ 2

+R(4) ∗ 2 ∗ 2 ∗ 2 + . . .

= R(1) ∗ 20 + R(2) ∗ 21 + R(3) ∗ 22 + R(4) ∗ 23

= + . . . + R(n) ∗ 2n−1

Hence the Ri are exactly the coefficients we’re
looking for.
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Example
910 = (410 ∗ 2) + 1

= ((210 ∗ 2) + 0) ∗ 2 + 1

= (((110 ∗ 2) + 0) ∗ 2 + 0) ∗ 2 + 1

= 10012

Formal Procedure base a → b

1. Set Q(0) = Na

2. Compute

Q(j) = integer
[
Q(j−1)

b

]

R(j) = remainder
[
Q(j−1)

b

]

Until Q(j) = 0

3. Nb = Rn ∗ bn−1 + Rn−1 ∗ bn−2 + . . . + R1 ∗ b0
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Another Example

17910 → N2

Q0 = 179

Q1 = 179
2 = 89 R1 = 1

Q2 = 89
2 = 44 R2 = 1

Q3 = 44
2 = 22 R3 = 0

Q4 = 22
2 = 11 R4 = 0

Q5 = 11
2 = 5 R5 = 1

Q6 = 5
2 = 2 R6 = 1

Q7 = 2
2 = 1 R7 = 0

Q8 = 1
2 = 0 R8 = 1

17910 → 101100112
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What About Other Bases?

17910 → N16

Q0 = 179

Q1 = 179
16 = 11 R1 = 3

Q2 = 11
16 = 0 R2 = 11

For digits greater than 9, we continue with A,

B, C, . . ..

Hence 17916 → B316.
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Fractions

Handled as an extension of the integers.

27 = 2 × 101 + 7 × 100

27.51 = 2 × 101 + 7 × 100 + 5 × 10−1 + 1 × 10−2

The decimal point seperates negative expo-
nents from nonnegative.

Exactly the same technique applies in binary
(or other) notations.

10 = 1 × 21 + 0 × 20

10.11 = 1 × 21 + 0 × 20 + 1 × 2−1 + 1 × 2−2

The binary point seperates negative from non-
negative exponents.

The point is called binary point,
decimal point,
octal point, etc.

according to the notation used.
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Conversion of Fractions

A fraction, e.g., 0.62510 can be converted to
binary notation by multiplying and dividing by
2 as follows:

0.62510 = 0.625 × 2

2

=
0.625 × 2

2
= 1.250 × 2−1

= 1 × 2−1 + (0.250) × 2−1

= 1 × 2−1 + 0.5 × 2−2

= 1 × 2−1 + 0 × 2−2 + (0.5) × 2−2

= 1 × 2−1 + 0 × 2−2 + 1 × 2−3

= 0.1012

Recipe: Multiply by target base,
seperate integer and frac-
tional parts. Repeat.
Integer parts taken in order
are the fraction digits!
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Another Example

0.710 = (0.7 × 2) × 2−1

= 1 × 2−1 + (0.4) × 2−1

= 1 × 2−1 + 0 × 2−2 + (0.8) × 2−2

= 1 × 2−1 + 0 × 2−2 + 1 × 2−3

+(0.6) × 2−3

= 0.1012 + (0.6) × 2−3

= 0.1012 + 1 × 2−4 + (0.2) × 2−4

= 0.1012 + 1 × 2−4 + 0 × 2−5

+(0.4) × 2−5

= 0.101102 + (0.4) × 2−5

But note:

0.7 = 0.12 + (0.4) × 2−1

= 0.101102 + (0.4) × 2−5

= 0.1 0110 0110 0110 0110 0110 . . .

Fractions exactly representable in one notation
are not always so in another.
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Arithmetic

Addition is much the same in any number sys-

tem. Digits are added one at a time. Carries

are propagated as a third set of digits. Exam-

ple:

0000 carry
4562 addend
1719 augend
6281 sum

Details

0 1 . 0 . . 1 . . .
. . . 2 . . 6 . . 5 . . 4 . . .
. . . 9 . . 1 . . 7 . . 1 . . .

1 8 1 2 8 1 6 2 8 1
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Arithmetic cont.

At each step only three digits are dealt with:

carry digit, range [0 . . .1]
addend digit, range [0 . . .9]
augend digit, range [0 . . .9]
sum, possible range [0 . . .19]

Required knowledge:

All combinations (a + b), where a and b are in

the range [0 . . .9].
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Binary Addition

Done like its decimal counterpart.

0101 + 0110 =?

in detail:

0 0 . 0 . . 1 . . .
. . . 1 . . 0 . . 1 . . 0 . . .
. . . 0 . . 1 . . 1 . . 0 . . .

1 1 1 0 1 1 1 0 0 1

The binary number combination rules are much

simpler than decimal:

0 + 0 = 0

1 + 0 = 1

1 + 1 = 10

The multiplication table is simple too:

0 × 0 = 0

0 × 1 = 0

1 × 1 = 1
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Finite Length Registers

Real computers have registers of fixed length

n, so all numbers must have exactly n digits.

Suppose n = 8. The range of natural numbers

that can be represented is

00000000 to 11111111 (binary)
000 to 377 (octal)
000 to 255 (decimal)
00 to FF (hexadecimal)

Addition may possibly overflow:

10111001 or B9
11000100 or C4
———— —
01111101 or 7D

not
101111101 or 17D

because there is no place to store a ninth digit!
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Finite Length Registers cont.

Similarly, counting (repeated addition of 1)

runs to 11111111 or FF, then wraps around to

00000000, like an automobile odometer.
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More Finite-Length Addition:

01001000
10111000
————
00000000

The answer is zero, modulo 256, or to 8 bits.

It would be different in a 9-bit machine (mod-
ulo 512):

001001000
010111000
————-
100000000

Proposition:

To every string S1 if N bits there corresponds
exactly one other string S2 of the same length
such that the sum of the two strings (evaluated
to N bits) is zero.

S2 is said to be the twos complement of S1.
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Twos Complement

This proposition can be proved by construc-

tion. Invert every bit in S1 to form another

string S0. Their sum is necessarily a string

11111 . . .11111. For example,

01001000
10110111
————
11111111

S0 is unique: no other string will yield 111 . . .1

as a sum.

Proof: rightmost digits must be inverses, oth-

erwise 1 cannor result. If there are inverses,

there can be no carry. If there is no carry, the

same argument applies to the next digit and

so on.
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Twos Complement cont.

If 00000001 is added to 11111111, zero re-

sults:

11111111
00000001
————
00000000

Therefore, S2 can always be constructed by

adding 00000001 to S0.

S0 is unique, so S2 is unique.
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Twos Complement cont.

A rule of ordinary arithmetic:

S1 + S2 = 0 implies S2 = −S1.

Adopt the same rule for arithmetic modulo K:

S1 + S2 = 0 modulo K

implies

S2 = −S1 modulo K.

Then

01001000 means +72 (modulo 256)
10111000 ” -72 ”
———— —–
00000000 0

Twos complementation:

1. Form logical complement by inverting each
bit.

2. Add 1.
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Complemented Arithmetic

Complemented arithmetic works in any base
including decimal, if word length is fixed.

Example: 3-digit word length.

To 3 digits,
499
626
125

so the symbol 626
stands for the value -374

Tens complementation works just like twos com-
plementation:

the number 374
has the 9’s complement 625
add 1 1
tens complement of number 626

Using complemented notations, all arithmetic
can be done without ever inventing the minus
sign!
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Twos complement numbers

Two different interpretations of any binary sym-

bol are available:

Binary Decimal Decimal
Symbol natural twos cp.

00000000 000 000
00000001 001 001
00000010 002 002

. . . . . . . . .
01111110 126 126
01111111 127 127
10000000 128 -128
10000001 129 -127
10000010 130 -126

. . . . . . . . .
11111110 254 -002
11111111 255 -001
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Twos complement numbers cont.

The symbol does not change, only its interpre-

tation does.

1. There is only one unique zero.

2. Leftmost bit gives away the sign.

3. Range is slightly asymmetric, because zero

looks positive.

4. Numbers wrap around, smallest always fol-

lows largest.
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Binary Subtraction

Totally unnecessary as a seperate operation.

(Form negative of number, then add). Exam-

ple:

010110 − 001001 =?

Subtrahend: 001001
Its complement: 110110 (1)
Add 1: 000001
Negative of subtrahend: 110111 (2)

Minuend: 010110
Negative of subtrahend: 110111
(add!) Difference: 001101 (3)

To prove the answer correct, add difference to

subtrahend:

001001

001101

010110
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Carries and Overflows

Twos complement arithmetic works because it

is length-limited (not in spite of this limita-

tion)!

A carry out of the high-order bit does not mean

the answer is wrong:

0001 1 1111 -1
0010 2 1110 -2
0011 3 1 1101 -3

Carry from bit 3 on right; none on left. Both

are correct.

0110 6 1010 -6
0100 4 1100 -4
1010 -6 1 0110 +6

Carry from bit 3 on right; none on left. Both

are wrong.
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Carries and Overflows cont.

Answers are wrong if the available number range

is overflowed. Carries have nothing to do with

it!

Suppose the addition

A + B = C

overflows the admissible number range.

Can A and B have opposite signs?

If they do,

|C| < max(|A|, |B|),
but if A and B are both within range, then C

must be also!
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Carries and Overflows cont.

Overflow can only occur if A and B have like

signs.

Overflow always produces the wrong sign.

Overflow

An overflow is known to have occurred if

1. both operands have the same sign,

2. and the result has a different sign.
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Multiplication

Multiplication is similar in all number bases:

1. Write down the multiplier and the multipli-

cand,

2. multiply entire multiplicand by each multi-

plier digit in turn,

3. add the partial results.

000 000 010 111 ∗ 000 000 011 001
000 000 011 001

0 000 000 110 01
00 000 001 100 1

0 000 000 110 01
1 000 111 111
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Multiplication cont.

Computers cannot handle blanks; fill in trailing

zeros where necessary:

000 000 010 111 ∗ 000 000 011 001
000 000 011 001

0 000 000 110 010
00 000 001 100 100

0 000 000 110 010 000
1 000 111 111
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Multiplication Technique

Every digit in a binary number is either 1 or 0,
so every step in multiplication requires either
adding or not adding.

To multiply M times N,

1. Set I = M; set P = 0.

2. For j = 0, 1, 2, ..., n-1 do the following:

3. If digit j of N is 1 then

set P = P + I;

Else do nothing;

4. Shift I left one place.

This process requires the ability to

1. add,

2. shift left.

In a left shift, digits migrate left;

most significant bit is lost,

least significant bit is set to 0.
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Negative Numbers

Multiplication is really repeated addition.

Addition of negative twos complement num-

bers works, so multiplication works too.

00011 * 11011
11011

1 1011
10001

+3 * -5
-15

works!

Two negative numbers:

1101 * 1110
1110

11 10
111 0

0110

-3 * -2
+6

works!

Division is done similarly – it requires subtrac-

tion and shifting right.
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Binary Division 
 
 

 
 
 
 
Algorithm 
 
 Remainder = Dividend 
 
 For i = n-1 to 0 
  if  Remainder – 2i x Divisor  ≥ 0 
   qi = 1 
   Remainder = Remainder – 2i x Divisor  ≥ 0 
  else 
   qi = 0 
 

! 

Dividend=Quotient"Divisor+Remainder

= q
i
2i "Divisor

i=0

n#1
$

% 

& 

' 
' ' 

( 

) 

* 
* * 
+Remainder

=q
n#1
2n#1"Divisor+...+q

1
2"Divisor+q

0
Divisor+Remainder
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A slightly more efficient method 
 
 
 Remainder = Dividend 
 D = 2n-1 x Divisor    left shifting 
 
 For i = n-1 to 0 
  if  Remainder – D  ≥ 0 
   qi = 1 
   Remainder = Remainder – D 
  else 
   qi = 0 
  D = D/2     right shift 
 
 
 
 
Conclusion: 
 
Binary division can be implemented using only 3 operators 
(-, <<, >>). 
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Practical Implementation 
 
 
Binary division operates symmetrically to multiplication, 
the difference being that one SUBTRACTS instead of adds 
and shifts RIGHT to divide by 2 instead of multiplying by 
2. 
 
The algorithm is best illustrated by example: 
 
Divide 01101101 by 00010101 
 
Assume a fixed length register of 8-bits and 2’s 
complement number representation.  The divisor and 
dividend are both assumed to be positive integers. 
 
void div8(char dividend, char divisor, 
          char *quotient, char *rmdr) { 
  int shifts, i; 
 
Step 0:  Initialization 
 
  *rmdr = dividend; 
  *quotient = 0; 
   shifts = 0; 
 
Step 1:  Normalization 
 
Shift the divisor to the left until the leftmost 1 is just to the 
right of the sign bit.  Count the number of shifts. 
 

 while ((divisor & 0x40) != 0x40) { 
 divisor = divisor << 1; 
  shifts++; 
 } 
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For this example, the number of shifts would be 2, meaning 
that we would need to perform 3 subtractions to complete 
the process. 
 
n.b. shifting left is equivalent to multiplying by 2; shifting 
right is equivalent to dividing by 2. 
 
For our example: 
 
  01101101  dividend  (109) 
  00010101  divisor     (21) 
   
  00101010  first shift 
 
  01010100  second shift 
 
 
Step 2: Subtract and Shift Loop: 
 
 for (i=0; i<=shifts; i++) { 
       if (*rmdr-divisor >= 0) { 
         *rmdr-= divisor; 
         *quotient+=1; 
       } 
      divisor=divisor>>1; 
      if (i != shifts) *quotient=*quotient<<1; 
    } 
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Observations 
 
• If the subtraction is positive, the quotient has a 1 in the 

current bit position. 
• The quotient string is built incrementally by adding the 

result for the current but position to the and of the 
quotient, and shifting left. 

 
For our example: 
 
  01101101  divisor < dividend 
  01010100  subtract 
  -------- 
  00011001  quotient = 1 
 
shift divisor and quotient for next iteration: 
 

 00101010  divisor 
  00000010  quotient 
 
end of iteration 1 
  

00011001  divisor > dividend 
  00101010  do not subtract 
  -------- 
  00011001  quotient = 10 
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shift divisor and quotient for next iteration: 
 
  00010101  divisor 

100 quotient 
 
end of iteration 2 
 
final iteration: 
 
  00011001  divisor < dividend 
  00010101  subtract 
  -------- 
  00000100  quotient = 101 
 
shift divisor but not quotient on last iteration: 
 
  00001010  divisor 
  00000101  quotient 

00000100  remainder 
 
sanity check:  quotient x initial divisor + remainder 
 
   5 x 21 + 4 = 109   correct result. 
 
Obviously this is not a general implementation, but it does 
outline the salient points. 



Shifting Left and Right

Shifting left is equivalent to multiplication by
the base – by 2 in binary notation, by 10 in
decimal.

Shifting right is equivalent to division by the
base.

00101 (decimal 5)
left: 01010 (decimal 10)
right: 00101 (decimal 5)

11010 (decimal -6)
left: 10100 (decimal -12)
rigit: 01010 (decimal +10)

Shifting right destroys sign. Adopt the con-
vention that right shifts leave most significant
bit unaltered. Then

11010 (decimal -6)
left: 10100 (decimal -12)
rigit: 11010 (decimal -6)
rigit: 11101 (decimal -3)
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Shifting Left and Right cont.

Arithmetic shift right (ASR) leaves the high-

order bit unchanged.

Logical shift right (SHR) places 0 in the high

order bit.

Thus far, to support the operations of Addi-

tion, Subtraction, Multiplication, and Division,

we require the following repitoire if basic oper-

ations:

ADD addition modulo N
INV complement (invert)
SHL shift left
SHR shift right
ASR arithmetic shift right
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Sign and Magnitude

An alternative approach to signed numbers;
use one bit for sign, remaining bits for mag-
nitude.

Example: 8-bits

+/- 1 0 1 1 0 0 1

Magnitude is now limited to half the natural
number range, which makes the signed number
range

-1111111 to +1111111 (binary)
-127 to +127 (decimal)

This is called sign and magnitude representa-
tion. It is more complicated than twos com-
plement notation:

1. There are two distinct zeros, +0 and -0.

2. Subtraction (or addition with different signs)

is a distinct operation.
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Real Number Representation

Real numbers are encoded using IEEE 754 for-
mat. The number is first normalized to 1 be-
fore the binary point as shown below. This
works for all numbers except 0, which must be
handled as a special case.

+1.0110011 × 21

0 10000000 01100110000000000000000
31 < 30 − 23 > < 22 − 0 >

The IEEE encoding is shown above. Observe
that there are 3 distinct fields:

1. The sign (bit-31) is set to 0 for positive
numbers and 1 for negative.

2. The exponent (bits 23-30) is stored in excess-
127 notation: as an unsigned integer with
127 added. This value is often referred to
as a bias.
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Real Number Representation cont.

3. The mantissa is stored in bits 0-22. It is
not necessary to explicitly store the leading
1.

We will refer to this interpretation of a binary
string S as ieee(S). Some observations:

- With 24 bits available for the mantissa, the
maximum precision is 7-8 significant fig-
ures, base 10.

- The largest exponent is 2127 (1.70× 1038)
and the smallest 2−126 (1.17 × 10−38).

- The addition of a bias shifts the represen-
tation of the exponent from [−126,127] to
[1,254].

- Exponent field values 0 and 255 signal spe-
cial cases.
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Real Number Representation cont.

Special Cases (signaling)

Mant=0 Mant=0x7FFFFF

Exp = 0 0 Denornalized
Exp = 255 ∞ NAN

These are the principal cases. For more detail

see the reference document on the 221 Home

Page.
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Floating Point Example

−265.7310 = −100001001.10111012

= −1.0000100110111012 × 28

The floating point representation is determined
as follows:

Sign 1
Exponent 10000111
Mantissa 000010011011101

110000111000010011011101

Sign: 1 negative, 0 positive

Exponent: to 8 bits,
810 = 00001000

12710 = 01111111
10000111

Mantissa: first 23 bits from binary point.
If < 23 bits, pad with zeros.
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ieee(S) ranges
Symbol S Mantissa Exp. Real Number

7FFFFFFF 7FFFFF 80 NaN
7F7FFFFF 7FFFFF 7F 3.4028235 E+38
7F7FFFFE 7FFFFE 7F 3.4028233 E+38
7F600000 600000 7F 2.9774707 E+38

41C00000 400000 04 2.4000000 E+01
41400000 400000 03 1.2000000 E+01

40C00003 400003 02 6.0000014 E+00
40C00002 400002 02 6.0000010 E+00
40C00001 400001 02 6.0000005 E+00
40C00000 400000 02 6.0000000 E+00

00800001 000001 -7E 1.1754945 E-38
00800000 000000 -7E 1.1754944 E-38
00000000 000000 00 0.0000000 E+00
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ieee(S) ranges cont.
Symbol S Mantissa Exp. Real Number

80000000 000000 00 0.0000000 E+00
80800000 000000 -7E -1.1754944 E-38
80800001 000001 -7E -1.1754945 E-38

C0C00000 400000 02 -6.0000000 E+00
C0C00001 400001 02 -6.0000005 E+00
C0C00002 400002 02 -6.0000010 E+00
C0C00003 400003 02 -6.0000014 E+00

C1400000 400000 03 -1.2000000 E+01
C1C00000 400000 04 -2.4000000 E+01

FF600000 600000 7F -2.9774707 E+38
FF7FFFFE 7FFFFE 7F -3.4028233 E+38
FF7FFFFF 7FFFFF 7F -3.4028235 E+38
FFFFFFFF 7FFFFF 80 NaN
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Double Precision

An extension to 64-bits using two 32-bit words

as follows.

63 62——–52 51——————–32
sign 11-bit exp. upper 20 mant.

31——————————————–0
lower 32-bits of mantissa

Exponent bias = 1023. Values 0 and 2047

reserved for signaling.

Same conventions as single precision with re-

spect to zero and other special cases.
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IEEE 754 Summary

Formula Single Double

P log(21+Nm) 7 digit 15 digits

R ±22Ne−1 ±3.4 × 1038 ±1.7 × 10308

S ±2−(2Ne−1−2) ±1.18 × 10−38 ±2.2 × 10−308

B 2Ne−1 − 1 127 1023

where P - precision, R - range, S - smallest

normalized value greater or less than 0, B -

bias, Ne - number of bits in exponent field,

and Nm - number of bits in mantissa field.

Smallest (0) and largest (2Ne−1) values of ex-

ponent field are reserved for signaling.
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Isomorphism

This form of encoding makes the real (“floating-

point”) positive numbers isomorphic to the in-

tegers.

Any given 32-bit word W has at least 3 possible

interpretations (so far):

unsigned integer int(W)
twos-complement integer int2(W)
floating-point number ieee(W)

These are defined so that

IF int(W1) > int(W2)

THEN ieee(W1) > ieee(W2)

and conversely, if ieee(Wk) ≥ 0.0
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Precision

34.671 is given to 5 significant digits; frac-
tional part is given to 3.

To represent 0.671 to the same precision re-
quires 10 bits in base-2.

Why?

67110 = 10100111112

In General:

Let n10 = given number in base-10.
db = # significant digits in base-b.

Then it follows that

n10 = bdb

log(n10) = db log(b)

db =log(n10)
log(b)
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Precision cont.

Converting from some arbitrary base a to some

other base b is slightly less convenient since a

base-a log function is not readily available. We

can still obtain a reasonable approximation as

follows:

Let da = # significant digits in base-a.
db = # significant digits in base-b.

Then it follows that

ada = bdb

da log(a) = db log(b)

db =da
log(a)
log(b)
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Precision cont.

Example 34.671

0.67110 → 3 significant digits in base-10. How

many in base-2?

db = log(671)
log(b) =

log(671)

log(2)

= 2.827
0.3011 = 9.39

or 10 when rounded to the next highest inte-

ger.

n.b. we use 671 for a in the above expression,

not 0.671.
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Representational Error

3 Sources

-Measurement

-Scaling

-Truncation and Roundoff

Transducer

A/D Conv.

D/A Conv.

measurement 
error

scaling

Actuator

scalingactuator error

Digital
Computer

truncation 
&

roundoff

Process

Resolution =
Dynamic Range of Signal

2n
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Representational Error - Integers

For numbers within the representational range,

i.e. [−2n−1,2n−1 − 1], the error characteristic

is constant across the range.

Case 1: Rounding to the nearest digit
Magnitude�of�error

Maximum
representable
negative�integer

Maximum
representable
positive�integer

0.5

Case 2: Truncation
Actual�error

Representable�values
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Representational Error - Floats

Floating point representations sample the real

line in intervals determined by the exponent.

Magnitude�of�error

Representable�numbers

24
2

2
2

1
2-

The magnitude of this error is given by:

Rep. Error =
length of interval

quantization

=
radixn − radixn−1

radix(#digits in mantissa)
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Rounding

Necessary because of quantization.

∞- ∞+

0

±∞ = ±radixradix(#exponent digits−1)

Example: radix=2, # exponent bits = 8.

±∞ = ±227−1 = ±2127 = ±1.7 × 1038

Consider 10110.101001 = 0.10110101001×25.

If the mantissa bas 5 bits then we can approx-
imate by:

-taking the first 5 digits to TRUNCATION

the right of ., i.e., 0.10110

-rounding to the nearest digit, ROUNDING

i.e., 0.10111.
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Rounding cont.

With base-10
192634 . 51834

. 5
192635 . 01835

This is refered has half adjusting, i.e., rounding
to the nearest integer.

Half-adjusting is fine most of the time, but is
problematic at the center, i.e., 0.5, introducing
a bias.

Statistical Rounding gets around this. If the
digit is at the center of range, then 50% of
the time round up, else round down.

Since the distribution of ODD & EVEN num-
bers is about equal, then rounding to make the
result ODD or EVEN will achieve the desired
effect.

Statistical rounding is more “accurate”.
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Rounding cont.

What about rounding binary numbers?

10110.101001

Half adjusting rule says if digit to be rounded

is 1, then round UP else if 0 round DOWN.

Statistical rounding rule says 50% of the time

round UP and the other 50% round down (i.e.

round to make the result ODD or EVEN de-

pending on the convention chosen).
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Rounding cont.

Observations:

- Half adjusting and truncation introduce about

the same error for binary numbers.

- Statistical rounding is a better choice, but

is more complex to implement (parity cir-

cuit).

- Better (simpler) to add additional bits and

truncate.
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Binary Coded Decimal

Another representation, often used in commer-

cial data processing.

The bit string is chopped into groups of 4 bits,

one for each decimal digit.

Example: 3728

0011 0111 0010 1000
3 7 2 8

Good: in exact accord with manual
calculations.

Bad: arithmetic rules are complicated
(slow!).
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Non-Numeric Data (Text)

The basic entities are printable characters. Re-

quirements:

Capital letters ABC. . . 26
Small letters abcd. . . 26
Numerals 0123456789 10
Punctuation marks 15 (or more)
Space 1

Total 78 (or more)

There are 64 different 6-bit symbols,
128 different 7-bit symbols,
256 different 8-bit symbols.
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Non-Numeric Data (Text) cont.

At least 7 bits must be used to make up a

useful set of characters.

Generally people reserve a word of 8-bits,

use the lease significant 7 for the character.

Bit 7 is reset, or used as an error check

(parity) bit.

A 6-bit character set is sometimes used --

it has capital letters only.
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ASCII encoding

The most common coding scheme is the ASCII

(American standard for computer information

interchange) character set. In recent years

ASCII has been superceeded by ISO standards,

but it is still widely used.

ASCII Character Set

Binary Octal Hex Char

0100000 040 20 space
0100001 041 21 !
0100010 042 22 ”

. . .
0101111 057 2F /
0110000 060 30 0
0110001 061 31 1

. . .
0111001 071 39 9
0111010 071 3A :
0111011 072 3B ;
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ASCII encoding cont.

ASCII Character Set

Binary Octal Hex Char

1000000 100 40 @
1000001 101 41 A
1000010 102 42 B

. . .
1100001 141 61 a
1100010 142 62 b
1100011 143 63 b

. . .
1111010 172 7A z
1111011 173 7B {

. . .
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Control Characters

ASCII characters 0000000 to 0011111 are non-
printable. Most of them control communica-
tion or printing.

Binary Octal Hex Char

0000000 000 00 NUL
. . .

0000100 004 04 EOT
. . .

0000110 006 06 ACK
0000111 007 07 BEL

. . .
0001011 011 09 HT
0001010 012 0A NL
0001011 013 0B VT
0001100 014 0C FF
0001101 015 0D CR

. . .

HT (hor. tab), NL (line feed), VT (ver. tab),
FF (form feed), CR (carriage return).
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Text Encoding

Text encoding is done on a character by char-
acter basis:

F r e d
01000110 01110010 01100101 01100100

46 72 65 64

It is often useful to pack several ASCII char-
acters in a single machine register. Consider a
machine with a 64-bit register length.

Upper 32 bits
A S C I

41 53 43 49
01000001 01010011 01000011 01001001

Lower 32 bits
I NUL NUL NUL

49 00 00 00
01001001 00000000 000000000 00000000

NUL (00) used to pad text.
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Alphabetic Ordering

Let the ASCII bit strings corresponding to char-

acters be interpreted as numbers, e.g., “ASCII”

= 415343494916. Let int(X) = integer value

of bit string X, and ascii(X) = character value.

Then

if int(S1) > int(S2)

then ascii(S1) > ascii(S2)

Ascending order of numerical values corresponds

to ascending alphabetic order (isomorphism).

Hence alphabetic sorting is equivalent to nu-

meric sorting.
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Alphabetic Sorting

Register length has a direct impact on the
speed of textual sorting as can be seen in the
following example.

Sorting with register length = 8

Initial Pass 1 Pass 2
IN 49 4E AT 41 54 AT 41 54
AT 41 54 IN 49 4E IF 49 46
IF 49 46 IF 49 46 IN 49 4E
NO 4E 4F NO 4E 4F NO 4E 4F

Sorting with register length = 16

Initial Pass 1
IN 494E AT 4154
AT 4154 IF 4946
IF 4946 IN 494E
NO 4E4F NO 4E4F

Observe how larger registers reduce the num-
ber of sorting passes required.
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Case Changes

In the ASCII character set

01000001 A 01100001 a
01000010 B 01100010 b
01000011 C 01100011 c

. . .
01011010 Z 01111010 z

Altering case is accomplished by changing bit 5

(single character operation). We need a mech-

anism to unconditionally set or clear specified

bits.

This can be done arithmetically, but a compar-

ison would be required to determine whether

to add or subtract a constant.
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Case Changes cont.

If shift operations are augmented by a rotate

operator, then it becomes possible to set and

clear any register bit, e.g., convert “a” to “A”.

01100001 a
11000010 rotate left
10000101 rotate left
00001010 shift left
01000001 rotate right

3 times
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Logical Operators

A more efficient approach to bit manipulation

is to include logical AND and OR operators.

Recall that

X Y X · Y
0 0 0
0 1 0
1 0 0
1 1 1

X Y X + Y
0 0 0
0 1 1
1 0 1
1 1 1

Bit 5 can be unconditionally cleared by ANDing

with the constant 5F , and unconditionally set

by ORing with 2016..

Example, a = 01100001, A = 01000001

01100001 · 01011111 01000001
01000001 + 00100000 01100001
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Quasi-Numeric Data

Some textual data looks numeric, but isn’t.

Example – a personnel record:

Name Payroll Soc. Insc. Birth
number number date

BLOGGS, J.Q. 72536 525367021 022546

not numeric data numeric
or text

Such data are usually stored as characters, not

as numeric values, because any manipulation

to be done will be of a text-editing rather than

arithmetic type.
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Isomorphism with Integers

In the previous example, the date field of the

personnel record was stored as day-month-year.

This is chronologically bad for ordering. A bet-

ter scheme is

year-month-day,

because historical sequences of dates are now

isomorphic with integers.

If Sn is some bit string,

int(S1) > int(S2)

if and only if

date(S1) > date(S2)

In other words, it is advantageous to design

data structures so that they are isomorphic

with integers.
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Text Masking

Logical AND and OR were used earlier to set or

clear bit 5 in an ASCII representation in order

to change case.

These operations can also be used to screen

out portions of a data structure for the purpose

of pattern matching.

Consider the following 8 byte representation

for a date record (ASCII):

1 7 5 6 J A 2 7
31 37 35 36 4A 41 32 37

Suppose you had to write a program to find all

date records containing JA. Solution: extract

the month field in each record and compare

against JA.
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Text Masking cont.

Using a logical product (AND)

31 37 35 36 4A 41 32 37 · 00 00 00 00 FF FF 00 00
= 00 00 00 00 4A 41 00 00

Using a logical sum (OR)

31 37 35 36 4A 41 32 37 + FF FF FF FF 00 00 FF FF

= FF FF FF FF 4A 41 FF FF
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Text Masking cont.

Procedure to detect records containing JA:

1. AND with mask 00000000FFFF0000, or

OR with mask FFFFFFFF0000FFFF.

2. Subtract 4A410000 from the result if AND

or FFFFFFFF4A41FFFF if OR.

3. Result = 0 in both cases if record contains

JA.
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Operator Summary

To perform useful computation, a general pur-

pose computer will usually contain at least the

following operations on data (Modulo-N):

Operator Operation

ADD binary addition
CMP bitwise complement
SHL shift left
SHR shift right
ASR arith. shift right
ROL rotate left
ROR rotate right
AND bitwise and
OR bitwise or
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