Module 1

Examples to work out

Hexadecimal

$3 F 8_{16}=$

Hexadecimal

$3 F 8_{16}=001111111000_{2}$

Base Conversion

Convert $139_{10} \longrightarrow \mathrm{~N}_{8}:$

$$
Q_{0}=
$$

Base Conversion

Convert $139_{10} \rightarrow \mathrm{~N}_{8}$:

$$
\begin{aligned}
& Q_{0}=139 \\
& Q_{1}=
\end{aligned}
$$

Base Conversion

Convert $139_{10} \longrightarrow \mathrm{~N}_{8}:$

$$
\begin{aligned}
& Q_{0}=139 \\
& Q_{1}=139 / 8=17 \\
& Q_{2}=
\end{aligned}
$$

$$
\mathrm{R}_{1}=3
$$

Base Conversion

Convert $139_{10} \longrightarrow \mathrm{~N}_{8}:$

$$
\begin{array}{ll}
\mathrm{Q}_{0}=139 & \\
\mathrm{Q}_{1}=139 / 8=17 & \mathrm{R}_{1}=3 \\
\mathrm{Q}_{2}=17 / 8=2 & \mathrm{R}_{2}=1 \\
\mathrm{Q}_{3}= &
\end{array}
$$

Base Conversion

Convert $139_{10} \longrightarrow \mathrm{~N}_{8}:$

$$
\begin{array}{ll}
\mathrm{Q}_{0}=139 & \\
\mathrm{Q}_{1}=139 / 8=17 & \mathrm{R}_{1}=3 \\
\mathrm{Q}_{2}=17 / 8=2 & \mathrm{R}_{2}=1 \\
\mathrm{Q}_{3}=2 / 8=0 & \mathrm{R}_{3}=2 \\
\mathrm{Q}_{4}= &
\end{array}
$$

Base Conversion

Convert $139_{10} \longrightarrow \mathrm{~N}_{8}:$

$$
\begin{array}{ll}
\mathrm{Q}_{0}=139 & \\
\mathrm{Q}_{1}=139 / 8=17 & \mathrm{R}_{1}=3 \\
\mathrm{Q}_{2}=17 / 8=2 & \mathrm{R}_{2}=1 \\
\mathrm{Q}_{3}=2 / 8=0 & \mathrm{R}_{3}=2
\end{array}
$$

Answer:

Base Conversion

Convert $139_{10} \rightarrow \mathrm{~N}_{8}$:

$$
\begin{array}{ll}
\mathrm{Q}_{0}=139 & \\
\mathrm{Q}_{1}=139 / 8=17 & \mathrm{R}_{1}=3 \\
\mathrm{Q}_{2}=17 / 8=2 & \mathrm{R}_{2}=1 \\
\mathrm{Q}_{3}=2 / 8=0 & \mathrm{R}_{3}=2 \\
\text { STOP } &
\end{array}
$$

Answer: $139_{10} \longrightarrow 213_{8}$
Check: $2{ }^{*} 8^{2}+1 * 8^{1}+3^{*} 8^{0}=128+8+3=139$

Fractions

$0.125_{10}=$?

Fractions

$$
0.125_{10}=\left(0.125 \times \frac{2}{2}\right)=0.25 \times 2^{-1}=0 \times 2^{-1}+0.25 \times 2^{-1}
$$

Fractions

$$
\begin{aligned}
0.125_{10} & =\left(0.125 \times \frac{2}{2}\right)=0.25 \times 2^{-1}=0 \times 2^{-1}+0.25 \times 2^{-1} \\
& =0 \times 2^{-1}+\left(0.25 \times \frac{2}{2}\right) \times 2^{-1}=0 \times 2^{-1}+0.5 \times 2^{-2}=0 \times 2^{-1}+0 \times 2^{-2}+0.5 \times 2^{-2} \\
& =0 \times 2^{-1}+0 \times 2^{-2}+\left(0.5 \times \frac{2}{2}\right) \times 2^{-2}=0 \times 2^{-1}+0 \times 2^{-2}+1 \times 2^{-3} \\
& =0.001_{2}
\end{aligned}
$$

Twos Complement

$$
\begin{aligned}
000 \ldots 00011 & =+3 \\
000 \ldots 00010 & =+2 \\
000 \ldots 00001 & =+1 \\
000 \ldots 00000 & =0 \\
111 \ldots .11111 & =-1 \\
111 \ldots 11110 & =-2 \\
111 \ldots . .1101 & =-3
\end{aligned}
$$

Division Algorithm

Remainder $=$ Dividend

$D=2^{n-1} \times$ divisor

For $\mathrm{i}=\mathrm{n}-1$ to 0
if Remainder $-\mathrm{D} \geq 0$ \{

$$
q_{i}=1
$$

Remainder = Remainder -D$\}$
else \{

$$
\left.q_{i}=0\right\}
$$

$D=D / 2$

Division Algorithm

Remainder $=$ Dividend
$D=2^{n-1} \times$ divisor
For $\mathrm{i}=\mathrm{n}-1$ to 0
if Remainder $-\mathrm{D} \geq 0$ \{

$$
q_{i}=1
$$

Remainder $=$ Remainder -D$\}$
else \{

$$
\left.q_{i}=0\right\}
$$

$D=D / 2$

Division Algorithm

Remainder $=$ Dividend

$$
D=2^{n-1} \times \text { divisor }
$$

For $\mathrm{i}=\mathrm{n}-1$ to 0
if Remainder $-\mathrm{D} \geq 0$ \{

$$
q_{i}=1
$$

Remainder $=$ Remainder -D$\}$
else \{

$$
\left.q_{i}=0\right\}
$$

$D=D / 2$

Division Algorithm

$D=2^{n-1} \times$ divisor \quad Left shifting

Divisor $=00010101$,
$D=2^{2} x$ divisor 2 shifts to the left!
1 shift 00101010
2 shifts 01010100
$D=01010100$

Division Algorithm

Remainder $=$ Dividend
$D=2^{n-1} \times$ divisor
For $\mathrm{i}=\mathrm{n}-1$ to 0
if Remainder $-\mathrm{D} \geq 0$ \{

$$
q_{i}=1
$$

Remainder $=$ Remainder -D$\}$
else \{

$$
\left.q_{i}=0\right\}
$$

$D=D / 2$

Division Algorithm

Remainder $=$ Dividend

$$
D=2^{n-1} \times \text { divisor }
$$

For $\mathrm{i}=\mathrm{n}-1$ to 0
if Remainder $-\mathrm{D} \geq 0$ \{

Remainder $=01101101$
$D=01010100$
$\mathrm{i}=2$
Remainder - D
$=00011001>0$

$$
q_{i}=1
$$

Remainder = Remainder -D$\}$
else \{

$$
\left.q_{i}=0\right\}
$$

$D=D / 2$

Division Algorithm

Remainder $=$ Dividend
$D=2^{n-1} \times$ divisor
For $\mathrm{i}=\mathrm{n}-1$ to 0
if Remainder $-\mathrm{D} \geq 0$ \{

$$
q_{i}=1
$$

Remainder $=01101101$

Remainder $=$ Remainder -D$\}$
else \{

$$
\left.q_{i}=0\right\}
$$

$D=D / 2$

Division Algorithm

Remainder $=$ Dividend
$D=2^{n-1} \times$ divisor
For $\mathrm{i}=\mathrm{n}-1$ to 0
if Remainder $-\mathrm{D} \geq 0$ \{

$$
q_{i}=1
$$

Remainder $=$ Remainder -D$\}$ Remainder $=00011001$ else \{

$$
\left.q_{i}=0\right\}
$$

$D=D / 2$

Division Algorithm

Remainder $=$ Dividend

$$
\begin{aligned}
& D=2^{n-1} \times \text { divisor } \\
& \text { For } \mathrm{i}=\mathrm{n}-1 \text { to } 0 \\
& \text { if Remainder }-\mathrm{D} \geq 0\{ \\
& \quad \mathrm{q}_{\mathrm{i}}=1
\end{aligned}
$$

Remainder $=01101101$

$$
\text { Remainder }=\text { Remainder }-\mathrm{D}\} \text { Remainder }=00011001
$$ else \{

$$
\left.q_{i}=0\right\}
$$

$$
\mathrm{D}=\mathrm{D} / 2
$$

Division Algorithm

Remainder $=$ Dividend

$$
\begin{aligned}
& D=2^{n-1} \times \text { divisor } \\
& \text { For } \mathrm{i}=\mathrm{n}-1 \text { to } 0 \\
& \text { if Remainder }-\mathrm{D} \geq 0\{ \\
& \quad \mathrm{q}_{\mathrm{i}}=1
\end{aligned}
$$

Remainder $=01101101$

$$
\text { Remainder }=\text { Remainder }- \text { D\} Remainder }=00011001
$$ else \{

$$
\left.q_{i}=0\right\}
$$

$$
D=D / 2
$$

right

Mantissa-Exponent

- In general, FP are stored as: Sign S x (2 power E):

S: Mantissa
E: exponent

- Increasing the size of the S enhances its

Mantissa-Exponent

- In general, FP are stored as: Sign S x (2 power E):

S: Mantissa
E: exponent

- Increasing the size of the S enhances its accuracy, while increasing the size of the exponent increases the

Mantissa-Exponent

- In general, FP are stored as: Sign S x (2 power E):

S: Mantissa
E: exponent

- Increasing the size of the S enhances its accuracy, while increasing the size of the exponent increases the range of numbers that can be represented.

Hidden Bit Normalization

- Any floating-Point number can be expressed in many ways.
- Thus, the following are equivalent, where the S is expressed in binary form:
$0.110 \times(2$ power 5$)$,
$1.100 \times(2$ power 4$)$,
$0.0110 \times(2$ power 6$)$

Hidden Bit Normalization

- To simplify operation on floating-point numbers, it is typically required that they be normalized.
- A normalized floating-point number is one in the form

Sign 1.bbbbb....(2 power E)

where b is either binary digit (0 or 1).

- Note: There is a leading "1" in the normalized significand.
- Most floating point formats do not store that leading "1".

Hidden Bit Normalization

- This results in having an additional bit of precision on the right of the number, due to removing the bit on the left.
- This missing bit is called the hidden bit (also known as a hidden 1).
- For example, if the significand in a given format is 1.1010 after normalization, then the bit pattern that is stored is 1010 - the leftmost bit is truncated (or hidden).

Hidden Bit Normalization

Mantissas are normalized so that the binary point falls to the right of the leading non-zero

Binary point is not stored

Leading digit is not stored

Excess-N

- No actual sign bit.
- Represent range of positive and negative numbers - "scale" the entire range so that it fits into the range of positive numbers.
- Ex. Want range $[0,255]$ to map to $[-128,128]$.

How to do this?

Excess-N

- Choose N to be about half the range ($2^{\mathrm{n}-1}$) and add to all numbers.
- For example, if we are using a 4-bit register, we can represent the unsigned numbers from 0 to 15;
- If we scale the numbers by adding 7 to any number we want to represent, then we can store the numbers from -7 to 8 , that is:

Excess-N

Number:

Representation:
$\begin{array}{llllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 1011 & 12131415\end{array}$
The binary representation is always 7 more than the value that is intended, so this would be called "excess-7" notation.

Excess-N

- In general, we would use: excess-($\left.2^{(n-1)}-1\right)$ for an n-bit register.
- Addition and subtraction can be performed easily as long as we remember to scale the result back

Excess-N

- Thus, when adding two excess notation representations, we must subtract N to get the correct representation (e.g. $-3+-3=-6$: $4+4-7=1$), and when subtracting we must add another N to get the correct answer (-$2-(-3)=1: 5-4+7=8)$.
- This is too cumbersome to use for the main representation for integers.

IEEE-754

- http://babbage.cs.qc.edu/IEEE54/Decimal.html
- http://www.aproposlogic.com/nc/FPFormats.html

