
Module 1

Examples to work out
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3F816 = 0011 1111 10002
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Base Conversion

Convert 13910 N8:
Q0 = 139
Q1 = 139/8 = 17 R1 = 3
Q2 = 17/8 = 2 R2 = 1
Q3 = 2/8 = 0 R3 = 2
STOP

Answer: 13910 2138

Check: 2*82 + 1*81 + 3*80 = 128 + 8 + 3 = 139
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http://www.easysurf.cc/cnver17.htm#b10tob2



Twos Complement

000...00011   = +3 
000...00010   = +2 
000...00001   = +1 

000...00000 = 0 
111...11111   = -1 
111...11110   = -2 
111...11101   = -3 
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Remainder = Dividend

For i = n-1 to 0
if Remainder – D ≥ 0 {

qi = 1
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else {
qi = 0}

D = D/2

12 divisornD −= ×

Example: 01101101 / 
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Division Algorithm

12 divisornD −= × Left shifting

Divisor = 00010101,

D = 22 x divisor     2 shifts to the left!

1 shift 00101010
2 shifts 01010100

D = 01010100
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Division Algorithm
Remainder = Dividend

For i = n-1 to 0
if Remainder – D ≥ 0 {

qi = 1
Remainder = Remainder – D}

else {
qi = 0}

D = D/2

12 divisornD −= ×

Remainder = 01101101 

D = 01010100 
i = 2
Remainder – D 
= 00011001 > 0
qi = 1
Remainder = 00011001

D = 00101010 shift 
right
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Mantissa-Exponent

• In general, FP are stored as:
Sign S x (2 power E): 

S: Mantissa
E: exponent

• Increasing the size of the S enhances its
accuracy, while increasing the size of the 
exponent increases the range of numbers 
that can be represented. 



Hidden Bit Normalization
• Any floating-Point number can be expressed in 

many ways. 

• Thus, the following are equivalent, where the S
is expressed in binary form: 

0.110 x (2 power 5), 
1.100 x (2 power 4), 
0.0110 x (2 power 6)



Hidden Bit Normalization
• To simplify operation on floating-point numbers, 

it is typically required that they be normalized. 
• A normalized floating-point number is one in the 

form 
Sign 1.bbbbb….(2 power E)

where b is either binary digit (0 or 1).

• Note: There is a leading "1" in the normalized 
significand. 

• Most floating point formats do not store that 
leading "1".



Hidden Bit Normalization

• This results in having an additional bit of 
precision on the right of the number, due 
to removing the bit on the left. 

• This missing bit is called the hidden bit 
(also known as a hidden 1).

• For example, if the significand in a given 
format is 1.1010 after normalization, then 
the bit pattern that is stored is 1010 - the 
leftmost bit is truncated (or hidden).



Hidden Bit Normalization
Mantissas are normalized so that the 
binary point falls to the right of the leading 
non-zero

Binary point is not stored

Leading digit is not stored



Excess-N
• No actual sign bit. 

• Represent range of positive and negative 
numbers - “scale” the entire range so that it fits 
into the range of positive numbers. 

• Ex. Want range [0,255] to map to [–128,128]. 

How to do this?



Excess-N
• Choose N to be about half the range (2n-1 ) and 

add to all numbers.

• For example, if we are using a 4-bit register, we 
can represent the unsigned numbers from 0 to 
15; 

• If we scale the numbers by adding 7 to any 
number we want to represent, then we can store 
the numbers from –7 to 8, that is:



Excess-N
Number:  

-7  -6  -5  -4  -3  -2  -1  0  1  2  3   4   5   6   7   8
Representation: 

0    1   2   3   4   5   6   7   8  9 10 11 12 13 14 15

The binary representation is always 7 
more than the value that is intended, so 
this would be called “excess-7” notation.  



Excess-N

• In general, we would use:
excess-(2(n-1) – 1) for an n-bit register. 

• Addition and subtraction can be performed 
easily as long as we remember to scale 
the result back



Excess-N

• Thus, when adding two excess notation 
representations, we must subtract N to get 
the correct representation (e.g. -3+-3=-6: 
4+4-7=1), and when subtracting we must 
add another N to get the correct answer (-
2-(-3)=1:5-4+7=8).  

• This is too cumbersome to use for the 
main representation for integers.



IEEE-754

• http://babbage.cs.qc.edu/IEEE-
54/Decimal.html

• http://www.apropos-
logic.com/nc/FPFormats.html


