
Module 1

Examples to work out

Hexadecimal

3F816 =

Hexadecimal

3F816 = 0011 1111 10002

Base Conversion

Convert 13910 N8:
Q0 =

Base Conversion

Convert 13910 N8:
Q0 = 139
Q1 =

Base Conversion

Convert 13910 N8:
Q0 = 139
Q1 = 139/8 = 17 R1 = 3
Q2 =

Base Conversion

Convert 13910 N8:
Q0 = 139
Q1 = 139/8 = 17 R1 = 3
Q2 = 17/8 = 2 R2 = 1
Q3 =

Base Conversion

Convert 13910 N8:
Q0 = 139
Q1 = 139/8 = 17 R1 = 3
Q2 = 17/8 = 2 R2 = 1
Q3 = 2/8 = 0 R3 = 2
Q4 =

Base Conversion

Convert 13910 N8:
Q0 = 139
Q1 = 139/8 = 17 R1 = 3
Q2 = 17/8 = 2 R2 = 1
Q3 = 2/8 = 0 R3 = 2
STOP

Answer:

Base Conversion

Convert 13910 N8:
Q0 = 139
Q1 = 139/8 = 17 R1 = 3
Q2 = 17/8 = 2 R2 = 1
Q3 = 2/8 = 0 R3 = 2
STOP

Answer: 13910 2138

Check: 2*82 + 1*81 + 3*80 = 128 + 8 + 3 = 139

Fractions

100.125 ?=

Fractions

1 1 1
10

20.125 (0.125) 0.25 2 0 2 0.25 2
2

− − −= × = × = × + ×

Fractions
1 1

10

1 1 1 2 1 2

1 2 2 1 2

2

1

2

3

20.125 (0.125) 0.25 2 0 2
2

20 2 (0.25) 2 0 2 0.5 2 0 2 0 2
2

20 2 0 2 (0.5) 2 0 2 0 2 1 2
2

0.001

0.25 2

0.5 2

− −

− − − − − −

− − − − − −

−

−

= × = × = × +

= × + × × = × + × = × + × +

= × + × + × × = ×

=

×

×

×

+ × +

http://www.easysurf.cc/cnver17.htm#b10tob2

Twos Complement

000...00011 = +3
000...00010 = +2
000...00001 = +1

000...00000 = 0
111...11111 = -1
111...11110 = -2
111...11101 = -3

Division Algorithm
Remainder = Dividend

For i = n-1 to 0
if Remainder – D ≥ 0 {

qi = 1
Remainder = Remainder – D}

else {
qi = 0}

D = D/2

12 divisornD −= ×

Example: 01101101 /
00010101

Division Algorithm
Remainder = Dividend

For i = n-1 to 0
if Remainder – D ≥ 0 {

qi = 1
Remainder = Remainder – D}

else {
qi = 0}

D = D/2

12 divisornD −= ×

Example: 01101101 /
00010101

Remainder = 01101101

Division Algorithm
Remainder = Dividend

For i = n-1 to 0
if Remainder – D ≥ 0 {

qi = 1
Remainder = Remainder – D}

else {
qi = 0}

D = D/2

12 divisornD −= ×

Division Algorithm

12 divisornD −= × Left shifting

Divisor = 00010101,

D = 22 x divisor 2 shifts to the left!

1 shift 00101010
2 shifts 01010100

D = 01010100

Division Algorithm
Remainder = Dividend

For i = n-1 to 0
if Remainder – D ≥ 0 {

qi = 1
Remainder = Remainder – D}

else {
qi = 0}

D = D/2

12 divisornD −= ×

Remainder = 01101101

D = 01010100
i = 2

Division Algorithm
Remainder = Dividend

For i = n-1 to 0
if Remainder – D ≥ 0 {

qi = 1
Remainder = Remainder – D}

else {
qi = 0}

D = D/2

12 divisornD −= ×

Remainder = 01101101

D = 01010100
i = 2
Remainder – D
= 00011001 > 0

Division Algorithm
Remainder = Dividend

For i = n-1 to 0
if Remainder – D ≥ 0 {

qi = 1
Remainder = Remainder – D}

else {
qi = 0}

D = D/2

12 divisornD −= ×

Remainder = 01101101

D = 01010100
i = 2
Remainder – D
= 00011001 > 0
qi = 1

Division Algorithm
Remainder = Dividend

For i = n-1 to 0
if Remainder – D ≥ 0 {

qi = 1
Remainder = Remainder – D}

else {
qi = 0}

D = D/2

12 divisornD −= ×

Remainder = 01101101

D = 01010100
i = 2
Remainder – D
= 00011001 > 0
qi = 1
Remainder = 00011001

Division Algorithm
Remainder = Dividend

For i = n-1 to 0
if Remainder – D ≥ 0 {

qi = 1
Remainder = Remainder – D}

else {
qi = 0}

D = D/2

12 divisornD −= ×

Remainder = 01101101

D = 01010100
i = 2
Remainder – D
= 00011001 > 0
qi = 1
Remainder = 00011001

D =

Division Algorithm
Remainder = Dividend

For i = n-1 to 0
if Remainder – D ≥ 0 {

qi = 1
Remainder = Remainder – D}

else {
qi = 0}

D = D/2

12 divisornD −= ×

Remainder = 01101101

D = 01010100
i = 2
Remainder – D
= 00011001 > 0
qi = 1
Remainder = 00011001

D = 00101010 shift
right

Mantissa-Exponent

• In general, FP are stored as:
Sign S x (2 power E):

S: Mantissa
E: exponent

• Increasing the size of the S enhances its

Mantissa-Exponent

• In general, FP are stored as:
Sign S x (2 power E):

S: Mantissa
E: exponent

• Increasing the size of the S enhances its
accuracy, while increasing the size of the
exponent increases the

Mantissa-Exponent

• In general, FP are stored as:
Sign S x (2 power E):

S: Mantissa
E: exponent

• Increasing the size of the S enhances its
accuracy, while increasing the size of the
exponent increases the range of numbers
that can be represented.

Hidden Bit Normalization
• Any floating-Point number can be expressed in

many ways.

• Thus, the following are equivalent, where the S
is expressed in binary form:

0.110 x (2 power 5),
1.100 x (2 power 4),
0.0110 x (2 power 6)

Hidden Bit Normalization
• To simplify operation on floating-point numbers,

it is typically required that they be normalized.
• A normalized floating-point number is one in the

form
Sign 1.bbbbb….(2 power E)

where b is either binary digit (0 or 1).

• Note: There is a leading "1" in the normalized
significand.

• Most floating point formats do not store that
leading "1".

Hidden Bit Normalization

• This results in having an additional bit of
precision on the right of the number, due
to removing the bit on the left.

• This missing bit is called the hidden bit
(also known as a hidden 1).

• For example, if the significand in a given
format is 1.1010 after normalization, then
the bit pattern that is stored is 1010 - the
leftmost bit is truncated (or hidden).

Hidden Bit Normalization
Mantissas are normalized so that the
binary point falls to the right of the leading
non-zero

Binary point is not stored

Leading digit is not stored

Excess-N
• No actual sign bit.

• Represent range of positive and negative
numbers - “scale” the entire range so that it fits
into the range of positive numbers.

• Ex. Want range [0,255] to map to [–128,128].

How to do this?

Excess-N
• Choose N to be about half the range (2n-1) and

add to all numbers.

• For example, if we are using a 4-bit register, we
can represent the unsigned numbers from 0 to
15;

• If we scale the numbers by adding 7 to any
number we want to represent, then we can store
the numbers from –7 to 8, that is:

Excess-N
Number:

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8
Representation:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The binary representation is always 7
more than the value that is intended, so
this would be called “excess-7” notation.

Excess-N

• In general, we would use:
excess-(2(n-1) – 1) for an n-bit register.

• Addition and subtraction can be performed
easily as long as we remember to scale
the result back

Excess-N

• Thus, when adding two excess notation
representations, we must subtract N to get
the correct representation (e.g. -3+-3=-6:
4+4-7=1), and when subtracting we must
add another N to get the correct answer (-
2-(-3)=1:5-4+7=8).

• This is too cumbersome to use for the
main representation for integers.

IEEE-754

• http://babbage.cs.qc.edu/IEEE-
54/Decimal.html

• http://www.apropos-
logic.com/nc/FPFormats.html

