Module 1

Examples to work out
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Base Conversion

Convert 139,, — Ng:

Q, =139
Q,=139/8=17 R =3
Q,=17/8=2 R, = 1
Q;=2/8=0 Ry =2
STOP

Answer: 139,, — 2134

Check: 2°8% + 1*81 + 3*80 = 128 + 8 + 3 = 139
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Fractions

0.12510 = (0.125><§) =0.25x27"'=0x27"+0.25%x2""



Fractions

0.12510:(0.125><§)=0.25><2—1::oxz"1+o.2,5x2—1
=0x2*+{025x§)x24:4»¢r*+05x24::ox2*+0x244415x22

=Ox21+0x22+{Q5x§)x22:Ox21+0x22+4x23

=0.001,

http://www.easysurf.cc/cnver17.htm#b10tob2



Twos Complement

000...00011 = +3
000...00010 = +2
000...00001 = +1
000...00000 =0
111...11111 = -1
111...11110 =-2
111...11101 =-3
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Division Algorithm

) = 2n—1 X divisor Left shifting

Divisor = 00010101,
D =22 x divisor 2 shifts to the left!

1 shift 00101010
2 shifts 01010100

D =01010100
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Division Algorithm

Remainder = Dividend Remainder = 01101101
D =2""xdivisor D = 01010100
. | =2
Fori=n-11t00 Remainder — D
If Remainder — D 2 0 { = 00011001 >0
Remainder = Remainder — D} Remainder = 00011001
else {

D = 00101010 shift

=0
q = 0} right

D =D/2
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Mantissa-Exponent

* In general, FP are stored as:
Sign S x (2 power E):
S: Mantissa
E: exponent

* Increasing the size of the S enhances its
accuracy, while increasing the size of the
exponent increases the range of numbers
that can be represented.



Hidden Bit Normalization

* Any floating-Point number can be expressed in
many ways.

* Thus, the following are equivalent, where the S
IS expressed in binary form:

0.110 x (2 power 5),
1.100 x (2 power 4),
0.0110 x (2 power 6)



Hidden Bit Normalization

To simplify operation on floating-point numbers,
it is typically required that they be normalized.

A normalized floating-point number is one in the
form

Sign 1.bbbbb....(2 power E)
where b is either binary digit (0 or 1).

Note: There is a leading "1" in the normalized
significand.

Most floating point formats do not store that
leading "1".



Hidden Bit Normalization

* This results in having an additional bit of
precision on the right of the number, due
to removing the bit on the left.

* This missing bit is called the hidden bit
(also known as a hidden 1).

* For example, if the significand in a given
format is 1.1010 after normalization, then
the bit pattern that is stored is 1010 - the
leftmost bit is truncated (or hidden).



Hidden Bit Normalization

Mantissas are normalized so that the
binary point falls to the right of the leading
non-zero

Binary point is not stored

Leading digit is not stored



Excess-N

* No actual sign bit.

* Represent range of positive and negative
numbers - “scale” the entire range so that it fits
into the range of positive numbers.

« Ex. Want range [0,255] to map to [-128,128].

How to do this?



Excess-N

« Choose N to be about half the range (2"1) and
add to all numbers.

* For example, if we are using a 4-bit register, we

can represent the unsigned numbers from 0 to
15;

* |If we scale the numbers by adding 7 to any

number we want to represent, then we can store
the numbers from —7 to 8, that is:



Excess-N

Number:
7-6-54-3-2-10123456 7 8
Representation:
0 1234567 89101112131415

The binary representation is always 7
more than the value that is intended, so
this would be called “excess-7" notation.



Excess-N

* In general, we would use:
excess-(2("1) — 1) for an n-bit register.

« Addition and subtraction can be performed
easily as long as we remember to scale

the result back



Excess-N

* Thus, when adding two excess notation
representations, we must subtract N to get
the correct representation (e.g. -3+-3=-0:
4+4-7=1), and when subtracting we must
add another N to get the correct answer (-
2-(-3)=1:5-4+7=8).

* This is too cumbersome to use for the
main representation for integers.



IEEE-754

» http://babbage.cs.qc.edu/IEEE-
54/Decimal.html

* http://www.apropos-
logic.com/nc/FPFormats.html




