
Introduction to Computer
Engineering
ECSE-221

Introduction Class

Instructor

• Prof. T. Arbel
– Email: WebCT
– McConnell Eng Bldg room 425

• Office Hours:
• Mondays, Wednesdays 12:30-1:30pm
• McConnell Eng Bldg room 425
• Also by appointment

Web Site

• WebCT:
– http://www.mcgill.ca/webct/
– Login should be set up the first time you use it.

The Course

• This course introduces the art of computer
engineering.

• What a computing machine does (i.e. the
operations that it performs) is defined by its
architecture and low-level programming.

• These, in turn, are specified by Boolean
operations, which are subsequently
implemented by digital circuits.

The Course

• This course introduces the basic concepts
and skills for:
– digital circuit design,
– low-level assembly programming,
– computer architecture.

The Course

• This course introduces the background
material on:
– Boolean logic,
– Data representation.

Pre-requisites

• COMP-202 – Introduction to Computing 1
– We will assume some background knowledge

on:
• The design and implementation of programs using a

modern high-level language, modular software
design and debugging,

• General programming concepts.

This Course Leads to…

• ECSE-322 Computer Engineering
• ECSE-323 Digital System Design

Which Leads To…

• ECSE-425 Comp. Org and Arch
• ECSE-427 Operating Systems
• ECSE-428 Software Engineering
• ECSE-525 Computer Architecture
• ECSE-526 Artificial Intelligence
• ECSE-531 Real Time Systems
• ECSE-532 Computer Graphics
• ECSE-543 Numerical Methods in EE
• ECSE-547 Finite Elements in EE

Learning Outcomes
• During this course, the student will acquire basic

knowledge in, and should be able to apply, in a design
context, the following aspects of computer systems:
– Data representation in digital computers.
– Boolean algebra.
– Basic combinational circuits; their analysis and synthesis.
– Elements of sequential circuits: latches, flip-flops, counters and

memory circuits.
– Computer structure, central processing unit, machine language.
– Assemblers and assembler language.

Questions

• How are programs written in a high-level
language, such as C or Java, translated into
the language of hardware?

• How does the hardware execute the
resulting program?

• Need to understand aspects of both
hardware and software that affect program
performance.

Questions

• What is the interface between software and
hardware?

• How does software instruct hardware to
perform needed functions?

• Key to understand how to write different
kinds of software.

Questions

• What determines the performance of a program?
• How can programmer improve performance?
• Depends on:

– Original program
– Software translation of program into computer

language
– Effectiveness of hardware at executing program.

Questions

• What techniques can be used by hardware
designers to improve performance?

Instructional Method

• Lectures (3 per week)
• 5 graded assignments (+1 not graded)
• Tutorials (2 identical 1 hour tutorials per

week)

• WebCT Discussion Forum

Tutorial Times
(The same 1-hr tutorial will be held twice a week)

Option 1:
M 5:35pm-6:25pm, or
W 3:35pm-4:25pm

Option 2:
M 6:35pm-7:25pm, or
W 3:35pm-4:25pm

Option 3:
M 5:35pm-6:25pm, or
W 4:35pm-5:25pm

Option 4:
M 6:35pm-7:25pm, or
W 4:35pm-5:25pm

Tutor

• John Harrison: “John Harrison” on WebCT
• The tutor will be responsible for:

– giving the class tutorials,
– providing assistance for assignments and

midterms,
– overseeing the grading performed by the 6

Teaching Assistants.

Assignments

• The assignments will consist of written
problems and laboratory work.

• Assignments will be handed out by posting
on the course web page.

• Will have approximately 2 weeks.

Evaluation Method

• Assignments – 5 x 4% = 20%
• MidTerm – 25%

– 1 hour in class time
– Covers first 3 modules

• Final – 55%
• Tentative dates found on course outline!

Textbooks and Course Materials

• A full set of notes for the course will be supplied.
• Textbook:

– Patterson, David A., and Hennessy, John L.,
Computer Organization & Design - The
Hardware/Software Interface, Third Edition,
Morgan Kaufmann, San Francisco, 1998, ISBN 1-
55860-428-6.

• Textbook is available at McGill University
Bookstore and on reserve at the PSE library
(Physical Sciences and Engineering Library).

Textbooks and Course Materials

• Not all of the text will be covered.
• Textbook provides a good overview of the field of

Computer Engineering and pointers to many of the
topics covered in later courses.

• Approximately 1/3 of the course is devoted to
elementary digital system design. The Patterson
and Hennessy text only covers this material briefly
in Appendix B. The required material will be
presented in class.

Textbooks and Course Materials

• In later courses (e.g. ECSE 323), students will
have the opportunity to design, implement, and
test digital systems in a laboratory.

• For ECSE 221, we will only be using a digital
logic simulation tool to investigate the behaviour
of these systems: LogicWorks.

• The program is installed on both the Department
and Faculty computing facilities.

Textbooks and Course Materials

• For assembly programming, we will use a
simulator for the MIPS R2000/R3000
machines described in the textbook: SPIM.
It is installed in the Department and Faculty
computing facilities.

• The program is also available for download
at http://www.cs.wisc.edu/~larus/spim.html.

Textbooks and Course Materials

• For C programming, any “C” compiler under any
operating system (DOS, Windows 9X/NT/2000,
MacOS, UNIX) will do, provided that it is ANSI
compliant (which includes most of the recent
compilers).

• For those not familiar with “C” programming and
debugging/development tools, tutorial sessions
will cover the basics required for the course.

• Freeware system called lcc32 is available for
download on the course web page.

Have Fun!

Computer System

• Typical application (e.g. word processor) –
– 100,000 – 1,000,000 lines of code!
– Rely on sophisticated software libraries that implement

complex functions in support of application.

• Hardware in computer can only execute extremely
simple, low-level instructions.

• Need several layers of software to translate high-
level operations to simple computer instructions.

Software Layers

P& H, Computer Organization and Design

Software Layers

• 2 types of system software central to every
computer:
– Operating system
– Compiler

Operating Systems

• Interface between user’s program and
hardware

• Provides a variety of services
• Some important functions:

Operating Systems

• Interface between user’s program and
hardware

• Provides a variety of services
• Some important functions:

– Handling basic input and output operations

Operating Systems

• Interface between user’s program and
hardware

• Provides a variety of services
• Some important functions:

– Handling basic input and output operations
– Allocating storage and memory

Operating Systems

• Interface between user’s program and
hardware

• Provides a variety of services
• Some important functions:

– Handling basic input and output operations
– Allocating storage and memory
– Providing for sharing of many applications

using it at the same time

Operating Systems

• Examples:
– Windows
– Linux
– MacOS

Compilers

• Many operations
• One important function:

– Translation of program written in a high
language (e.g. C or Java) -> instructions that
hardware can execute (assembly language
statements)

Computer Language

• Language of computer – binary numbers
• binary digit or bit (0 or 1)
• Computers work based on instructions –

collections of bits that computer
understands:
– e.g. 0001001010100010 might mean add 2

numbers!

Computer Language

• Need to have symbolic way to communicate
these instructions

• Assembler: Program that translates
symbolic version of instruction into binary.

Add B, C -> 0001001010100010

Computer Language

• Programming in assembly language means writing
a line of code for each machine instruction!

• Needed more powerful language: high-level
programming language.

• Compiler translates
B+C -> Add B,C

• Assembler translates
Add B, C -> 0001001010100010

P& H, Computer Organization
and Design

Computer Language

• Advantages of high level languages:
– Allow programmers to think in more natural

language
– Allow languages to be designed according to

use (e.g. Fortan: scientific computing)
– Improve programmer productivity
– *** Allow programs to be independent of

compiler, hardware

Computer Engineering

• The underlying technologies are those of
– electrical engineering
– mechanical engineering
– computer science

• What is a Computer System?
– A structure for acquiring, storing, manipulating

and delivering data

Computer Engineering

• The three major components are:
– Communications
– Storage
– Processing

Computer Engineering

• The constraints on design are:
– The current state of technology
– Manufacturing capability
– Cost
– Reliability
– Legal requirements
– Physical size
– ….

Computer Technology

• Computer technology has made incredible
progress over 60 years.

• Overall progress is product of 3 factors:
– Technology
– Architecture
– Compiler

• 1.6x/year improvement!
• No other technological system improves that fast

(e.g. airplanes)

Computer System

• Constructed from many devices
• CPU – Central Processing Unit

– Digital logic for processing data via set of instructions
– Early days: $$, huge. Today: cost decreased

(commodity), why?
• Advent of VLSI (Very Large Scale Integrated circuit)
• Developments in IC production

– Internal complexity, processing power increased
dramatically:

• room full of equipment -> chip a few centimeters square

Computer System

“Where… the ENIAC is equipped with 18,000
vacuum tubes and weighs 30 tons,
computers in the future may have 1,000
vacuum tubes and perhaps weight just 1 ½
tons.”
- Popular Mechanics, March 1949

Processors

Intel Pentium 4 (mounted on top of its heat sink)

7 Generations of Pentium III chips

Moore’s Law

• Moore's Law is the observation that the
complexity of integrated circuits, with respect to
minimum component cost, doubles every 24
months (quoted as 18 months).

• It is attributed to Gordon E. Moore, a co-founder
of Intel.

• If Moore's Law were applicable to the airline
industry, a flight from New York to Paris in 1978
that cost $900 and took seven hours, would now
cost about $0.01 and take less than one second.

http://en.wikipedia.org/wiki/Moore's_law

System Components

• Developments in IC production - impacts
on other parts of system:

- Memory costs have dropped dramatically
over past 15 years (2-3 orders of magnitude)

System Components

• Other components:
– Input devices (e.g. keyboards, mice)
– Output devices (e.g. monitors, printers)
– Storage systems (e.g. memory, disks, tape)
– Communications (e.g. modems, networking)

ECSE-322

Aim of 221 Course

• Provide sufficient background to understand
fundamental operations of basic computer
building blocks

• Introduce students to tradeoffs in computer
design

Aim of 221 Course

• Introduce data representation, Boolean
algebra

• Low level language -> defined by Boolean
operations -> implemented by digital
circuits

• Describe some basic architecture and
assembly

Aim of 221 Course

• Provide strong basis which will be assumed
and used extensively in subsequent courses!

• Material covered in this course required
knowledge for computer design: used in
today’s computers (e.g. Intel, graphics
processors)

