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Q1: Base conversion

A:  122

I: Base 2

122/2 = 61
R=0

61/2 = 30
R=1

30/2 = 15
R=0

15/2 = 7
R=1

7/2 = 3

R=1

3/2 = 1

R=1

1/2 = 0

R=1

0/2 = 0

R=0

So 122 in binary is “0111 1010”


II: Base 16

122/16
= 7
R=10

7/16 = 0
R=7

Since “10” = A, 122 represented in ox  is  “7A”

B:  1100 1010 0010

By solving II first, we get the decimal value:  3234

I: Base 16


3234/16 = 202

R = 2

202/16 = 12

R = 10


12/16 = 0

R = 12

Since 10 = A and 12 = C, 1100 1010 0010 in hexadecimal is “CA2”

II: Base 10

(1 x 2^11) + (1 x 2^10) + 0 + 0 + (1 x 2^7) + 0 + (1 x 2^6) + 0 + 0 + 0 (1 x 2^1) + 0

2048 + 1024 + 128 + 64 + 2 = 3234
So 1100 1010 0010 is “3234” in decimal

III: Base 3


3234/3 = 1078

R=0


1078/3 = 359

R=1


359/3 = 119

R=2


119/3 = 39

R=2


39/3 = 13

R=0


13/3 = 4

R=1


4/3 = 1


R=1


1/3 = 0 

R=1

So 1100 1010 0010 in base 3 is equal to “11102210”

C:  C21.23F


I: Base 2

We know that db = da x log(a) / log (b)

db = ?,   b=2
da = 3,   a=16
db = 3 x log (16)/log(2)

db = 12
So we need 8 binary digits to preserve the precision 

In II, we established that the decimal value of C21.23F is 3105.1404
Left hand side





3105/2 = 1552

R=1

1552/2 = 776

R=0

776/2 = 388

R=0

388/2 = 194

R=0

194/2 = 97

R=0

97/2 = 48

R=1

48/2 = 24

R=0

24/2 = 12

R=0

12/2 = 6

R=0

6/2 = 3


R=0

3/2 = 1


R=1

1/2 = 0


R=1

Binary result: 1100 0010 0001.xxxxxx

Right hand side of the point:

0.140380859 = 0.140380859 x 2/2 = 0.140380859 x 2 x 2^-1 = 0.280761718 x 2^-1 = 
(0 x 2^-1) + 0.280761718 x 2^-1 = … + 0.561523436 x 2^-2 = 
(0 x 2^-2) + 0.561523436 x 2^-2 = … + 1.123046872 x 2^-3 = 
(1 x 2^-3) + 0.123046872 x 2^-3 = … + 0.246093744 x 2^-4 = 
(0 x 2^-4) + 0.246093744 x 2^-4 = … + 0.492187488 x 2^-5 =

(0 x 2^-5) + 0.492187488 x 2^-5 = … + 0.984374976 x 2^-6 =

(0 x 2^-6) + 0.984374976 x 2^-6 = … + 1.968749952 x 2^-7 =

(1 x 2^-7) + 0.968749952 x 2^-7 = … + 1.937499904 x 2^-8 = 
(1 x 2^-8) + 0.937499904 x 2^-8 = … + 1.874999808 x 2^-9 =

(1 x 2^-9) + 0.874999808 x 2^-9 = … + 1.749999616 x 2^-10 =

(1 x 2^-10) + 0.749999616 x 2^-10 = … + 1.499999232 x 2^-11 = 

(1 x 2^-11) + 0.499999232 x 2^-11 = … + 0.999998464 x 2^-12 =

(0 x 2^-12) + 0.999998464 x 2^-12 = … + 1.999996928 x 2^-13 = 

(1 x 2^-13) + …  we only need 12 digit precision.

= xxx.0010 0011 1110
Therefore, the number C23.21F in binary is: 1100 0010 0001. 0010 0011 1110

II: Base 10

We know that db = da x log(a) / log (b)

db = number of precision digits in base b

da = number of precision digits in base a

db = ?,  b=10

da = 3,  a=16
db = 3 x log(16)/log(10)

db = 3.61  = 4

We need 4 digits of precision in base 10 to represent 3 digits of precision in base 16.

The number is then:

(C x 16^2) + (2 x 16^1) + (1 x 16^0) . (2 x 16^-1) + (3 x 16^-2) + (F x 16^-3)
=(12 x 16^2) + (2 x 16^1) + (1 x 16^0) . (2 x 16^1) + (3 x 16^-2) + (15 x 16^-3)

= 3072 + 32 + 1 + 0.125 + 0.01171875 + 0.003662109
= 3105.140380859
Adjusting to 4 digits after the decimal point, we get “3105.1404”


II: Base 5
We know that db = da x log(a) / log (b)

db = number of precision digits in base b

da = number of precision digits in base a

db = ?

b = 5

da = 3

a = 16
db = 3 x log(16)/log(5)
db = 5.17 = 6

The hexadecimal number C23.21F is 3105.140380859 in decimal

Left part:

3105/5 = 621 

R=0

621/5 = 124

R=1

124/5 = 24

R=4

24/5 = 4

R=4

4/5 = 0


R=4

The left part of the point is 44410.xxxxx

After the decimal point, we have:

0.140380859 x 5/5 = 0.701904295 x 5^-1 = 

(0 x 5^-1) + 0.701904295 x 5^-1 = … + 3.509521475 x 5^-2 =

(0 x 5^-2) + 3.509521475 x 5^-2 = … + 17.547607375 x 5^-3 = 

(3 x 5^-3) + 2.547607375 x 5^-3 = … + 12.738036875 x 5^-4 =
(2 x 5^-4) + 2.738036857 x 5^-4 = … + 13.690184375 x 5^-5 = 

(2 x 5^-5) + 3.690184375 x 5^-5 = … + 18.450921875 x 5^-6 =

(3 x 5^-6) + …we only six digits
The full answer in base 5 is: “44410.003223”

Question 2: What is the max and min numbers in the range of a 5 digit number (Expressed in original base and decimal)? 

And how many numbers can we represent (answer in decimal)?
Q2-A Binary 2s complement?

For a 5 digit binary number, there are 2^5 possibilities, so we can express a range of 32 numbers.

The value zero will be represented by 0 0000.  

The maximum value we can represent is (1/2 the range) – 1 (because of the 0)

= (1/2 x 2^5) - 1

= (2^4) - 1

= 16 -1

= 15

Since 16 = 2^5, in binary, it is represented at 1 x 2^5, 0 x 2^4… and so forth

16 = 1 0000

15 = 16 – 1

15 = 1 0000 – 0 0001

15 = 0 1111

The minimum value we can represent is –(1/2 the range)

= -(1/2 * 2^5)

= -2^4

= -16
We know (or at least should know), that in 2s complement notation, the numbers start at 0 with 0 0000, then grow, then switch from the highest value, to the lowest value.

In this case: 0,1,2,3 … ,14,15,-16,-15,-14, … ,-2,-1,0

From that rational, the minimum value (-16), is represented in binary by the next number after the maximum value, 15.

Since 15 = 0 1111, 16 = 1 0000.

Summary, for a 5 bit register, the range is 32, the min value is -16 (1 0000) and the max value is +15 (0 1111)
Q2B-A 5-bit base 21 positive integer
For a 5 digit base number, there are 21^5 different number arrangement possibilities, so we can express a range of 4 084 101 different values.

The lowest value we can represent is 0, because these are POSITIVE integers. This value will be represented as 0 0000 in 5 bit base 21.

The highest value we can represent is 21^5 – 1, (to the power of 4 because we represent 21^0, 21^1, 21^2, 21^3, 21^4) and minus 1 because of the 0, which is equal to 4 084 100..

Now in base 21, our digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A(10), B(11), C(12), D(13), E(14), F(15), G(16), H(17), I(18), J(19), K(20).

(In base 2, we have a range from 0 and 1, in decimal, we have a range from 0 and 9, therefore in base 21, we have a range from 0 and 20(K)).

The highest value we can represent is obviously K KKKK (21^5 – 1 = 4 084 100).

To prove that, K KKKK = K x 21^4 + K x 21^3 + K x 21^2 + K x 21^1 + K x 21 ^0

= 20 x 21^4 + 20 x 21^3 + 20 x 21^2 + 20 x 21^1 + 20 x 21^0

= 3 889 620 + 185 220 + 8 820 + 420 + 20

= 4 084 100

Summary, for a 5 bit register, the range is 4 084 101, the min value is 0 (0 0000) and the max value is 4 084 100 (K KKKK)
Q2C:A 5 bit base 6 in 6 complement.
For a 5 digit base 6 number, there are 6^5 different number arrangement possibilities, so we can express a range of 7 776 different values.

The value zero will be represented by 0 0000.  

The maximum value we can represent is (1/2 the range) – 1 (because of the 0)

= (1/2 x 6^5) - 1

= 3 888 -1

= 3 887
	3887
	/6=
	647.833333
	Rest = 
	5

	647
	/6=
	107.833333
	Rest = 
	5

	107
	/6=
	17.8333333
	Rest = 
	5

	17
	/6=
	2.83333334
	Rest = 
	5

	2
	/6=
	0.33333334
	Rest = 
	2


So the maximum value (3887) is represented by 2 5555.

The minimum value we can represent is –(1/2 the range)

= -(1/2 * 6^5)

= - 3 888
We know (or at least should know), that in 6s complement notation, the numbers start at 0 with 0 0000, then grow, then switch from the highest value, to the lowest value.

In this case: 0,1,2,3 … , 3 886,  3 887, -3 888, -3 887, -3 886, … ,-2,-1,0

From that rational, the minimum value (-3 888), is represented in base 6 with 5s complement by the next number after the maximum value 2 5555.

3 887 + 1 =  -3 888   =>

2 5555 + 0 0001 = 3 0000
Summary, for a 5 bit register, we can express 7 776 different values in base 6 with 6s complement ranging from the min value: -3 888 (denoted 3 000) and the max value: 3 887 (denoted 2 5555)
Question 3: Numbers are stored in 16 bit registers as 2s complements binary with no overflow. Convert to binary to do the math, then give the answer in hex and decimal.

Q3A: 33B7 – 219C

First, convert 33B7 to decimal:

33B7 = 3 x 16^3 + 3 x 16^2 + B(11) x 16^1 + 7 x 16^0 

= 3 x 4096 + 3 x 256 + 11 x 16 + 7 x 1
= 12 288 + 768 + 176 + 7
= 13239

Then to binary:

13 239/2 = 6619
R = 1

6 619/2 = 3309
R = 1

3 309/2 = 1654
R = 1

1654/2 = 827

R = 0

827/2 = 413

R = 1

413/2 = 206

R = 1

206/2 = 103

R = 0

103/2 = 51

R = 1

51/2 = 25

R = 1

25/2 = 12

R = 1

12/2 = 6 

R = 0

6/2 = 3


R = 0

3/2 = 1


R = 1

1/2 = 0


R = 1

So 33B7 in binary is 0011 0011 1011 0111

We are evaluating a 2s complement, and this value is before the mid value, so we know that it represent its value, and not its negative complement.

Then we convert 219C to decimal:

219C = 2 x 16^3 + 1 x 16^2 + 9 x 16^1 + C(12) x 16^0
= 2 x 4096 + 1 x 256 + 9 x 16 + 12 x 1

= 8192 + 256 + 144 + 12

= 8604

Then to binary:
8604/2 = 4302

R = 0

4302/2 = 2151

R = 0

2151/2 = 1075

R = 1

1075/2 = 537

R = 1

537/2 = 268

R = 1

268/2 = 134

R = 0

134/2 = 67

R = 0

67/2 = 33

R = 1

33/2 = 16

R = 1

16/2 = 8

R = 0

8/2 = 4


R = 0

4/2 = 2


R = 0

2/2 = 1


R = 0

1/2 = 0


R = 1

So the binary value is 0010 0001 1001 1100. This value is also smaller than the mid range of representations (0111 1111 1111 1111 = highest positive and 1000 0000 0000 0000 = highest value of negative).
(I guess we could have just looked at the 1st bit to determine the sign… oops!)

Therefore, our subtraction:

  0011 0011 1011 0111


- 0010 0001 1001 1100
Can be done as:

0011 0011 1011 0111 + 2s complement of 0010 0001 1001 1100

The 2s complement of 
  0010 0001 1001 1100 is:

  1101 1110 0110 0011 

+0000 0000 0000 0001

=1101 1110 0110 0100

The substation then becomes:

Carry: 1 1111 1111 1100 1000

    
  0011 0011 1011 0111

  
+1101 1110 0110 0100

=         1 0001 0010 0001 1011

Since there are no reserves allocated for overflow, the subtraction becomes: 

0001 0010 0001 1011 

Verification of the result:

Carry:     0000 0000 0011 0000

   0001 0010 0001 1011


+ 0010 0001 1001 1100


   0011 0011 1011 0111
Since we got back to our initial number, the subtraction method was adequate and the result was relevant.

Final step, our subtraction yielded 0001 0010 0001 1011 as a result, which, in decimal is:

= 0+0+0+ 1 x 2^12 +0+0+ 1 x 2^9 +0+0+0 + 1 x 2^4 + 1 x 2^3 +0+ 1 x 2^1 + 1 x 2^0

= 4096 + 512 + 16 + 8 + 2 + 1
= 4 635

This in hexadecimal is:

4635/16 = 289

R = 11(B)

289/16 = 18

R = 1

18/16 = 1

R = 2

1/16 = 0

R = 1

So the difference calculated is 0001 0010 0001 1011 in binary, 4 635 in decimal or 121B in hexadecimal.

Q3B: 4321 + 531F
 First, let’s convert 4321 to decimal:
4321 = 4 x 16^3 + 3 x 16^2 + 2 x 16^1 + 1 x 16^0

= 4 x 4096 + 3 x 256 + 2 x 16 + 1

= 16 384 + 768 + 32 + 1

= 17 185

Then to binary:

17185/2 = 8592
R = 1

8592/2 = 4296

R = 0

4296/2 = 2148

R = 0
2148/2 = 1074

R = 0

1074/2 = 537

R = 0

537/2 = 268

R = 1

268/2 = 134

R = 0

134/2 = 67

R = 0

67/2 = 33

R = 1

33/2 = 16

R = 1

16/2 = 8

R = 0

8/2 = 4


R = 0

4/2 = 2 

R = 0

2/2 = 1


R = 0

1/2 = 0


R = 1

So the binary value of the addend is: 0100 0011 0010 0001

Then we do the same thing for the adder:
531F = 5 x 16^3 + 3 x 16^2 + 1 x 16^1 + F(15) x 16^0

= 5 x 4096 + 3 x 256 + 1 x 16 + 15 x 1

= 20 480 + 768 + 16 + 15

= 21 279
Then to convert in binary:

21 279/2 = 10639
R = 1
10639/2 = 5319
R = 1

5319/2 = 2659

R = 1

2659/2 = 1329

R = 1

1329/2 = 664

R = 1

664/2 = 332

R = 0

332/2 = 166

R = 0

166/2 = 83

R = 0

83/2 = 41

R = 1

41/2 = 20

R = 1

20/2 = 10

R = 0

10/2 = 5

R = 0

5/2 = 2


R = 1

2/2 = 1


R = 0

1/2 = 0


R = 1

So our adder has a binary value of 0101 0011 0001 1111

Instinctively, we can tell that this addition will yield an incorrect result, by observing that these are both positive values (the first bit = 0) that have a fairly big value in our number range (because the 2nd most significant bit is a 1 on both numbers). When we add them because the 2nd most significant bits are both 1s, their addition will change the most significant bit from 0 to 1, making the result negative. It is obvious that 2 large numbers added together can NOT produce a negative value. But we’ll do the addition anyways, but only because its part of the assignment. 

 Carry:   1000 1110 0111 1110
 

   
  0100 0011 0010 0001
  
+0101 0011 0001 1111
Sum:      1001 1110 0100 0000
We just demonstrated here that there is an error indeed; two positive numbers added together gave a negative result.

To transform this result in positive, we’ll have to find its 2s compliment:


   1001 1110 0100 0000


   0110 0001 1011 1111


+ 0000 0000 0000 0001
           
   0110 0001 1100 0000
From there:

0110 0001 1100 0000

= 0+2^14+2^13+0 + 0+0+0+2^8 + 2^7+2^6+0+0 + 0+0+0+0

= 16384 + 8912 + 256 +128 + 64 

= 25744

We just have to put back the negative sign and we get 1001 1110 0100 0000 in 2s complement is equal to -25 744.

It is even more obvious now that we’ve gone beyond our number range because 1785 + 2179 != -25744.

This number in hexadecimal is:

-25744/16 = -1609
R = 0

-1609/16 = -100
R = 9

- 100/16 = -6

R = 4

- 6/16 = 0

R = -6

From all this, we established that 4321 + 531F = -6490, and that this result is not accurate, because we went beyond the range of our numbers.
Q4A:  0001 0011 x 0000 1011

      0001 0011

x    0000 1011



      000 10011



+ 0 00 100110


          + 00 0 0000000


        + 000  10011000


   + Carry:     1111100


       11010001

Answer: 1101 0001

Q4B:  0001 0011 / 0000 1011

        
                         01.101             




1011 |  0001 0011.000

    - 1 011    

      1 0011  

     -   1011       


      0 1000.0

        - 101.1     

           010.10


         -   10.11


  10.100



-  1.011


 01.001
So 0001 0011 / 0000 1011 = 0000 0001.101 with a remainder of 1.001

Q5A: Convert -5.77359 x 10^35 in IEEE 754 format and write the answer in hexadecimal.

Looking at the absolute value of the number, let’s convert it from powers of 10 to powers of 2.

5.77359 x 10^35 = 2^Y
log(5.77357 x 10^35) = log(2^Y)

log(5.77357 x 10^35) / log(2) = Y
Y = 118.8 = 119

From that, we can say that 

5.77358 x 10^35 = Z x 2^119

Z = 5.77358 x 10^35 / 2^119

Z = 0.868711766

So our number in its normalized form is 1.737423533 x 2^118
There will be 3 parts of the number representation:

I-The sign (bit32) = [1], because our number is negative

II- The exponent (bits 31 to 24) stored in excess 127:
For 2^118, we want to represent 118 in excess 127
118 + 127 = 245

245/2 = 122 
R = 1

122/2 = 61
R = 0

61/2 = 30
R = 1

30/2 = 15
R = 0

15/2 = 7
R = 1

7/2 = 3

R = 1

3/2 = 1

R = 1

1/2 = 0

R = 1

Making the bits allocated for the exponent = [111 1010 1]

III-The bits [23 to 0] will represent the mantissa. With the hidden bit, the number we want to represent is 0.737423533

The initial number (5.77359 x 10^35) had 6 significant figures, so we will need 6 x log(10)/log(2) = 19.9 = 20 significant figures, -1 hidden bit = 19 bits to store its value in the mantissa. 
	
	
	
	
	
	
	
	
	Factors:

	0.73742353
	x 2^
	0
	x 2/2=
	1.474847 
	x 2^
	-1
	
	1
	x 2^
	-1

	0.474847066
	x 2^
	-1
	x 2/2=
	0.949694
	x 2^
	-2
	
	0
	x 2^
	-2

	0.949694132
	x 2^
	-2
	x 2/2=
	1.899388
	x 2^
	-3
	 
	1
	x 2^
	-3

	0.899388264
	x 2^
	-3
	x 2/2=
	1.798777
	x 2^
	-4
	
	1
	x 2^
	-4

	0.798776528
	x 2^
	-4
	x 2/2=
	1.597553
	x 2^
	-5
	
	1
	x 2^
	-5

	0.597553056
	x 2^
	-5
	x 2/2=
	1.195106
	x 2^
	-6
	
	1
	x 2^
	-6

	0.195106112
	x 2^
	-6
	x 2/2=
	0.390212
	x 2^
	-7
	 
	0
	x 2^
	-7

	0.390212224
	x 2^
	-7
	x 2/2=
	0.780424
	x 2^
	-8
	
	0
	x 2^
	-8

	0.780424448
	x 2^
	-8
	x 2/2=
	1.560849
	x 2^
	-9
	
	1
	x 2^
	-9

	0.560848896
	x 2^
	-9
	x 2/2=
	1.121698
	x 2^
	-10
	
	1
	x 2^
	-10

	0.121697792
	x 2^
	-10
	x 2/2=
	0.243396
	x 2^
	-11
	 
	0
	x 2^
	-11

	0.243395584
	x 2^
	-11
	x 2/2=
	0.486791
	x 2^
	-12
	
	0
	x 2^
	-12

	0.486791168
	x 2^
	-12
	x 2/2=
	0.973582
	x 2^
	-13
	
	0
	x 2^
	-13

	0.973582336
	x 2^
	-13
	x 2/2=
	1.947165
	x 2^
	-14
	
	1
	x 2^
	-14

	0.947164672
	x 2^
	-14
	x 2/2=
	1.894329
	x 2^
	-15
	 
	1
	x 2^
	-15

	0.894329344
	x 2^
	-15
	x 2/2=
	1.788659
	x 2^
	-16
	
	1
	x 2^
	-16

	0.788658688
	x 2^
	-16
	x 2/2=
	1.577317
	x 2^
	-17
	
	1
	x 2^
	-17

	0.577317376
	x 2^
	-17
	x 2/2=
	1.154635
	x 2^
	-18
	
	1
	x 2^
	-18

	0.154634752
	x 2^
	-18
	x 2/2=
	0.30927
	x 2^
	-19
	 
	0
	x 2^
	-19

	0.309269504
	x 2^
	-19
	x 2/2=
	0.618539
	x 2^
	-20
	
	0
	x 2^
	-20

	0.618539008
	x 2^
	-20
	x 2/2=
	1.237078
	x 2^
	-21
	
	1
	x 2^
	-21

	0.237078016
	x 2^
	-21
	x 2/2=
	0.474156
	x 2^
	-22
	
	0
	x 2^
	-22

	0.474156032
	x 2^
	-22
	x 2/2=
	0.948312
	x 2^
	-23
	 
	0
	x 2^
	-23


So the value to enter in the mantissa is [101 1110 0110 0011 1110 0100]

Since only 20 of those bits are needed for our representation, the mantissa only needs to be [101 1110 0110 0011 1110 0000]

Assembling those 3 items, we have the binary value:

[1] [111 1010 1] [101 1110 0110 0011 1110 0000]

1111 1010 1101 1110 0110 0011 1110 0000, a 32 bit number.

Using to following conversion table:
	0
	0

	1
	1

	10
	2

	11
	3

	100
	4

	101
	5

	110
	6

	111
	7

	1000
	8

	1001
	9

	1010
	A

	1011
	B

	1100
	C

	1101
	D

	1110
	E

	1111
	F


Our number becomes:

	1111 1010 1101 1110 0110 0011 1110 0000

	F
	A
	D
	E
	6
	3
	E
	0


From this data, -5.77359 x 10^35 is represented in single float IEEE 754 as 
FADE 63E0 in hexadecimal, or 1111 1010 1101 1110 0110 0011 1110 0000 in binary.
Q5B: Convert the IEEE 754 number 078DB219 to its decimal form.

Using the same table as we did in Q5a:

	0
	7
	8
	D
	B
	2
	1
	9

	OOOO
	O111
	1000
	1101
	1011
	OO10
	OOO1
	1001


Our number is 0000 0111 1000 1101 1011 0010 0001 1001

Split in 3 sections:

[0][000 0111 1][000 1101 1011 0010 0001 1001]

I- The mantissa is [0], so the number is positive (+)

II- The exponent is  [000 0111 1]
Converted to decimal, this gives:

	2^
	Multiplier
	Value
	Total

	7
	0
	128
	0

	6
	0
	64
	0

	5
	0
	32
	0

	4
	0
	16
	0

	3
	1
	8
	8

	2
	1
	4
	4

	1
	1
	2
	2

	0
	1
	1
	1

	Decimal
	Value:
	
	15


And since the exponent is expressed in excess 127, the actual exponent is 15-127 = -112

III- And finally for the mantissa [000 1101 1011 0010 0001 1001]
We convert it to decimal as well:

	bit (2^)
	Multiplier:
	Value
	Total

	-1
	0
	0.5
	0

	-2
	0
	0.25
	0

	-3
	0
	0.125
	0

	-4
	1
	0.0625
	0.0625

	-5
	1
	0.03125
	0.03125

	-6
	0
	0.015625
	0

	-7
	1
	0.0078125
	0.0078125

	-8
	1
	0.00390625
	0.00390625

	-9
	0
	0.001953125
	0

	-10
	1
	0.000976563
	0.000976563

	-11
	1
	0.000488281
	0.000488281

	-12
	0
	0.000244141
	0

	-13
	0
	0.00012207
	0

	-14
	1
	6.10352E-05
	6.10352E-05

	-15
	0
	3.05176E-05
	0

	-16
	0
	1.52588E-05
	0

	-17
	0
	7.62939E-06
	0

	-18
	0
	3.8147E-06
	0

	-19
	1
	1.90735E-06
	1.90735E-06

	-20
	1
	9.53674E-07
	9.53674E-07

	-21
	0
	4.76837E-07
	0

	-22
	0
	2.38419E-07
	0

	-23
	1
	1.19209E-07
	1.19209E-07

	Decimal
	Value:
	
	0.106997609


Taking in consideration the hidden bit, we have 1.106997609 stored as a value in the mantissa.

Our mantissa stored 24 significant figures, so in decimal, we need:

Db = da * log(a)/log(b)

Db = 24 * log(2)/log(10)

Db = 7.22 = 8

So the global number is + 1.1069976 x 2^-112.

Then, if we want it in its scientific notation,

1.1069976 x 2^-112 = 10^Y

log(1.1069976 x 2^-112) = log(10^Y)

Y = log(1.1069976 x 2^-112 / log(10)
Y = -33.67
Y = -34

From there,

1.1069976 x 2^-112 = Z x 10^-34 

Z =  1.1069976 x 2^-112 / 10^-34

Z = 2.131999826
The number stored was:  + 2.1319998 x 10^-34
Q5C: A 40 bit IEEE 754 allocates 11 bits for the exponent. What is the range?

11 bits, we can represent 2 048 different binary combinations, in other words, 2048 different binary numbers. That being said, we want just about half of them to be negative, so that out negative range will be [-1024, -1], and our positive range will be [0, 1023]. Since the lowest value 0000 0000 000 and the highest value 1111 1111 111 are reserved for special cases, that leaves us with a range of [-1023, 1022], that gives us 2046 possible combinations. 
