1-Analysis of the motion of a rolling object
When the object sits at the top of an incline plane, it has potential energy. As the object rolls down that plane, it’s potential energy gets transformed into kinetic energy, stored both in its linear and angular momentum. The quantity of kinetic energy is equal to the quantity of potential energy minus losses by friction.

As an algorithm to build a seesaw, we propose sensing the presence of an object in the middle of the seesaw and tilting it in the opposite direction. Due to the configuration of our hardware, the small radius of the rotating motor gives us very limited plane inclination. Building the system with the wheel, since it tends to stop because of the teeth getting stuck in the joints of the rail, we will focus on increasing the friction force between the rail and the axel of the wheel. This will allow us to minimize losses of angular momentum due to the wheel “spinning” when the rail is inclined. The ball has the opposite problem; it has a tendency to roll too fast and fall off the edges. To counter this, we propose setting up two levels of inclination. When the sensor detects the ball passing by, it waits a short period of time and cranks the rail to a full tilt to brake the movement. Afterwards, the inclination is reduced to provide the ball with a more gentle coasting speed on its way to the other side.
A good upgrade to the seesaw would be to add an infra red sensor at the edge of the rail. This would enable us to gauge the rolling object’s speed and adjust the plane’s inclination accordingly, using the light sensor as a trigger for left/right motions. We could then build an “intelligent” machine that could adapt itself to most rolling objects.

2-Main flaw in the system provided

The main flaw in every system provided to us so far is that the creators of the algorithm do not take the time to tweak the code such that the machine produces the required output. Therefore, we generally do not even look at it when creating our algorithm, because we would rather solve our own design issues rather than someone else’s.

More specifically, here are the flaws we can see in this code.

1 – The ambient light is a variable: this can become problematic because light readings depend on time of the day (sunlight through window), and whether the sensor has a white or colored wall as background. As a solution, every time the program is run, we wait for the sensor to initialize, take a sample of the ambient light and set the threshold light level at ambient + 5, which gives us perfect and self-calibrating object detection accuracy in diverse environments.

2 – The playing of tones seems to be a waist of CPU usage and battery power.
3 – The program does not accommodate for motor overshoot, which means the tilt of the platform is not accurately controlled.
4 – For the rolling ball, the program is simply not fast enough and always lets the ball roll off the ends.
3- Program for the wheel

We define an angle which will correspond to full up/down. Then we initialize the light sensor, wait and take a light sample to set threshold light at ambient + 5. Since we start from horizontal, we tilt the seesaw until it reaches critical angle.

In a while(true) loop, we detect light and if the wheel is “seen”, we set the Boolean variable “correction = true” to tell the system that a correction is needed. We rotate the motor all the way to –critical angle (full 180 rotation) and reset “correction = false” to reenter in passive detection mode. The loop repeats until it is stopped by the user.
#define ROTATION_ANGLE 60

//This angle at 100% power results in a 90 rotation by the time the motor stops turning (due to momentum)
task main() {

 SetSensorLight(S3);

 int wait_time, signed_rotation, light, light_thresh = 0, lr=0;

 bool correction = false;

 signed_rotation = ROTATION_ANGLE;

 ResetAllTachoCounts(OUT_A);

 Wait(500); //for the sensor to initialise

 light_thresh = Sensor(S3)+5; //set threshold to ambient light

 //We start at horizontal position. Now we need to tilt the seesaw to initiate motion

 OnFwdEx(OUT_A,100,RESET_NONE);

 while (MotorTachoCount(OUT_A) < signed_rotation);

 OffEx(OUT_A,RESET_NONE);

 signed_rotation = -signed_rotation; //Inverts rotation

 while(true){

 light = Sensor(S3);

 while(light > light_thresh) { //If sensor detects ball

 light = Sensor(S3);

 correction = true; //Establish that a correction is needed

 }

 //Correction loop

 if(correction && lr == 0){

 OnRevEx(OUT_A,100,RESET_NONE);

 while (MotorTachoCount(OUT_A) > signed_rotation);

 OffEx(OUT_A,RESET_NONE);

 signed_rotation = -signed_rotation;

 correction = false;

 lr = 1;

 }

 if(correction && lr == 1){

 OnFwdEx(OUT_A,100,RESET_NONE);

 while (MotorTachoCount(OUT_A) > signed_rotation);

 OffEx(OUT_A,RESET_NONE);

 signed_rotation = -signed_rotation;

 correction = false;

 lr = 0;

 } //End of scanning/Adjusting thread

}//End True

}//End of Main

4-Seesaw with the ball
The previous program, for the wheel, is essentially very simple: it tilts the platform the other way any time it sees the wheel pass in front of the light sensor. It works because it performs the right balance of driving the oscillation and damping the oscillation. By definition, the oscillation is being driven any time the wheel rolls downhill, and it is being damped any time the wheel rolls uphill. Since we tilt the platform when the wheel is in the middle of the platform (which makes the transition from driving the oscillation to damping it), we spend about the same time driving the oscillation as damping it, so the amplitude stays within an acceptable range.
With the ball, the time scale is faster. However, the light sensor and motor have the same reaction time. If we try to run the previous program with the ball instead of the wheel, the platform does not tilt up quickly enough. This means that the ball spends more time rolling downhill (which drives the oscillation), and the amplitude rapidly increases until the ball rolls off the end of the platform. In order to maintain stable oscillation with the ball, we needed to find a way to provide additional damping of the oscillation.
One way to increase damping would have been to tilt the platform a small amount of time before the light sensor detects the ball. However, this was not feasible since the NXT does not have the ability to predict the future.

Then we came upon the idea of using varying degrees of tilt. If the platform were tilted more steeply when the ball was rolling up it, and less steeply when the ball was rolling down it, then the damping part would be stronger than the driving part. The net effect would be more damping, less driving. In terms of energy, the ball would lose chunks of mechanical energy at the extremes of its position on the platform, because at those points, the platform would change from steep tilt to shallow tilt, and the ball would consequently drop down a few centimeters. This causes a loss in potential energy, in an abrupt way that prevents the energy from being efficiently transferred to kinetic form.
It was a bit tricky using the motor to achieve the desired platform angles. The motor always continues to rotate after the Off() instruction is executed, due to momentum. The amount of overshoot depends on how fast the motor was turning. In our program, the overshoot is even more pronounced because we have a short (50 ms) spin-down time to make the motion smoother. After some experimentation, we determined a set of values to use as target values for the tachometer. Counter-intuitively, the target value when the motor spins to 90 degrees (a steep tilt) is 25 degrees, and the target value when the motor spins back to a smaller angle (for a shallow tilt) is 80 degrees. This works because the overshoot from the first movement always brings the motor beyond 80 degrees.
We had to tweak a few time constants before the program worked well. One delay (TILT_TIME) is the time between tilting the platform to a steep position and tilting it to a shallow grade. The program worked well when this was set to 400 ms. Another delay (REACTION_TIME) was the delay between seeing the ball and then tilting the platform up steeply. If we left this at zero, there would be too much damping, and the ball would at some point not completely roll past the middle, which ruined everything. The program worked best when this delay was set to 50 ms.
#define REACTION_TIME 50

#define TILT_TIME 400

task main() {

int light_thresh;

 int tacho_target_far=25; // these are counter-intuitive magic numbers

int tacho_target_near=80;

 int dir = -1; // the first tilt will be a tilt back

 SetSensorLight(S3);

 Wait(50);

 light_thresh = Sensor(S3)+8;

while (Sensor(S3) <= light_thresh) Wait(20); // wait until first cross

while (1) {

Wait(REACTION_TIME);

 OnFwdEx(OUT_A,dir*100,RESET_NONE); // turn to steep inclination
 while (dir*MotorTachoCount(OUT_A) < tacho_target_far);

 CoastEx(OUT_A,RESET_NONE);

 Wait(50);

OffEx(OUT_A,RESET_NONE);

Wait(TILT_TIME); // pause for a moment in the steep position

 OnRevEx(OUT_A,dir*100,RESET_NONE); // turn back to shallow inclination
 while (dir*MotorTachoCount(OUT_A) > tacho_target_near);

 CoastEx(OUT_A,RESET_NONE);

 Wait(50);

OffEx(OUT_A,RESET_NONE);

 while (Sensor(S3) > light_thresh) Wait(20); // make sure ball has gone..

while (Sensor(S3) <= light_thresh) Wait(20); // then wait until we see ball

 dir = -dir;

 }

}
Watch this program in action at: http://www.youtube.com/watch?v=Z8NqmMw_SVA
