ECSE 211

Lab 3: Wall Following with the Ultrasonic Sensor

Thomas Covo
260236891

Simon Foucher
260223197

Original (Demo) Program

The program starts by defining constants for easy tweaking. We set an optimal wall distance, an allowable error band around the optimal wall distance, a base speed at which the robot will drive and a deltaspeed, which will represent the value added to or subtracted from the driving speed whenever a correction is needed. We establish the speedplus = basespeed+deltaspeed constant, which is a positive correction, and speedminus = basespeed-deltaspeed for a negative correction.

In the main thread, we start by allocating memory for variables, initializing the sensors and getting the robot to drive at basespeed.

Then starts the main program loop. We evaluate the distance read by the US sensor, display it on the screen and compare it with our optimal coasting distance as defined earlier. If the difference falls between our allowable error band, we set both motors at coasting speed and go back to the start of the loop.

Otherwise, if the absolute value of the error is greater that what we defined as allowable, we evaluate 2 conditions. If the error is negative, meaning that we are too close to the wall, we reduce the speed of the farthest motor to speedminus (as defined earlier) to cause the robot to move further from the wall then go back to the start of the loop. If the error was positive, meaning that we are too far from the wall, we increase the speed of the farthest wheel to speedplus (as defined earlier) to cause the robot to move closer to the wall, the program goes back to the start of the loop to get another US reading.

The program will stay in this loop until it is turned off or the brick runs out of batteries.
Our program

We decided to erase the entire program and start over. The first thing we wanted to implement was sensor value smoothing. To achieve this, our program records a certain number of sensor readings consecutively, and then (effectively) calculates the average. The number of sensor reading we group together is stored in the NUM_PTS constant. In order to avoid losing information from integer division, we never divide the sum of the sensor values; instead, when we compare the sensor value sum to another number, we pre-multiply the other number by NUM_PTS so that we are comparing numbers of the same order.

The main program loop reads the ultrasonic sensor value and adds it to a running total. Every time NUM_PTS has been collected, we enter the piece of code that reacts to the smoothed sensor readings. After the value is checked, the running sum is reset and the program starts recording the next group of raw sensor readings.

Our program has two distinct error-correction behaviours: proportional and differential. On the proportional side, we monitor the smoothed sensor values, and react any time they deviate from a set range: if the value is less than DANGER_THRESH, we’re too close, and if the value is greater than SPACE_THRESH, we’re too far from a wall. Whenever either of these conditions is encountered, the robot changes its motion state to correct the error. The robot will stay in this correctional motion state (e.g. backing up, turning) until it gets a smoothed sensor reading which is back in the acceptable range. The program uses the boolean value correctionInProgress to keep track of whether it’s in a correctional motion state.

On the differential side, the robot compares the current smoothed sensor reading to a sensor reading which was observed some time ago. If the current value is less than the earlier value, that means the robot is getting closer to a wall. In reaction, it makes a very small adjustment, turning right for an instant in order make its trajectory more parallel to the wall (instead of toward the wall). The same logic is applied when the robot senses it is getting farther from the wall. Unlike the proportional corrections, these differential corrections are one-shot corrections: a small adjustment is made, and the robot immediately goes back to its normal running state. Overall, the differential corrections are less important than the proportional corrections, but they help straighten the robot out when it is traveling inside the band of allowable distance, helping the robot find a more efficient path.

Compared with the original program, our program manages to avoid obstacles in front of it by backing up slightly any time something is too close to its sensor, and then turning only after backing up.

Our program also has a watchdog, which essentially watches how long the robot spends trying to correct an error, and if it’s taking too long, the watchdog cuts in and causes the robot to try something different. This is used only in the case of the robot being to close to a wall, where the robot often got stuck in a corner because it had no room to back up. With the watchdog, the robot will struggle a bit but then it will try a different motion, and will eventually work its way free of the corner.
Program Listing
// distance thresholds:

#define DANGER_THRESH 10

#define SPACE_THRESH 50

#define MIN_CHANGE 2

#define DEFAULT_SPEED 70

#define BRAKE_TIME 60

// fine adjustment times:

#define LFT_FN_ADJ_TIME 200

#define RGT_FN_ADJ_TIME 200

#define NUM_PTS 4

// the watchdog error count:

#define WD_ERRORCOUNT 4

task main() {

 int currentSum = 0, lastSum = 0;

 bool correctionInProgress;

int counter = 1,errorCount=0;

SetSensorLowspeed(S1);

OnFwd(OUT_BC,DEFAULT_SPEED);

while (true) {

currentSum += SensorUS(S1);
if (counter == NUM_PTS) {

 if (errorCount>WD_ERRORCOUNT) {

 // we seem to be stuck

 Off(OUT_BC);

 Wait(BRAKE_TIME);

 OnRev(OUT_BC,50);

 Wait(400);

 OnFwd(OUT_C,50);

 Wait(200);

 OnFwd(OUT_BC,50);

 correctionInProgress = true;

 lastSum = currentSum;

 errorCount=0;

 }

 if (currentSum < DANGER_THRESH*NUM_PTS) {

 // too close

 Off(OUT_BC);

 Wait(BRAKE_TIME);

 if (errorCount == 0) {

 // only back up at the beginning of a correction

 OnRev(OUT_BC,70);

 Wait(100);

 }

 OnRev(OUT_B,70);

 Off(OUT_C);

 Wait(200);

 correctionInProgress = true;

 lastSum = currentSum;

 errorCount++;

 }

 else if (currentSum > SPACE_THRESH*NUM_PTS) {

 // big open space!

 OnFwd(OUT_BC,70);

 Wait(100);

 OnFwd(OUT_C,40);

 OnFwd(OUT_B,80);

 correctionInProgress = true;

 lastSum = currentSum;

 }

 else if (currentSum-lastSum < -MIN_CHANGE*NUM_PTS) {

 // DIFF ERROR: we're getting closer..

 Coast(OUT_B);

 Wait(RGT_FN_ADJ_TIME);

 OnFwd(OUT_BC,DEFAULT_SPEED);

 lastSum = currentSum;

 }

 else if (currentSum-lastSum > MIN_CHANGE*NUM_PTS) {

 // DIFF ERROR: we're getting farther..

 Coast(OUT_C);

 Wait(LFT_FN_ADJ_TIME);

 OnFwd(OUT_BC,DEFAULT_SPEED);

 lastSum = currentSum;

 }

 else if (correctionInProgress) {

 correctionInProgress = false;

 errorCount=0;

 // resume course:

 OnFwd(OUT_BC,DEFAULT_SPEED);

 }

 currentSum = 0;

 counter = 1;

 } else {

 counter++;

 }

 }

}
