ECSE211 Design

Lab report #2
By:

Tom Covo

260236891

Simon Foucher
260223197

1-Experimental procedure
Goal: Determine the efficiency of the motor under different torque loads, at different coasting speeds to be able to evaluate power conversion efficiency.

To do so, we will compare the mechanical work done to the electrical load the motor will impose on a DC power supply set at constant voltage.

Experimental procedure:

We designed a program which will make our robot lift a weight up and down at different motor speeds many times using motor from the TXT kit is connected to a winch acting as a crane.

The robot’s power supply is connected to a DC power source at 9V. The positive lead of the DC source is connected in series with a digital ammeter displaying the current load of the motor at steady voltage. We can use this to measure the electrical power the robot is consuming while performing its task.

Before we begion, we measured the current og the NXT “brain” with the motor connected to it on idle mode and with the motor unplugged to measure the current used by the motor sensors. Then we unplugged the motor and ran the program in order to see how much current the chip needs to perform the operations of out program.

Once that is established, we connected the winch to the NXT and started our program. From a low position, we initiate an ascending motion and wait a few seconds while the motor achieves coasting RPM (We can’t evaluate the power consumption while the motor accelerates because of the non linear nature of the current surge generated by the change in momentum of the motor), at which point the robot plays a tone and start counting time and motor rotation.

As we get close enough to the top of the climb, the robot plays a second tone, records the total amount of motor rotation as well as the time of ascension on a file and start decelerating the motor (Here once again, we can’t evaluate electrical power consumption because of the non linearity of the current at constant voltage).

The experiment is done giving the motor different %max power under different loads. From the total angle of rotation of the motor, we can calculate the vertical distance the weight traveled, and with the time, the mechanical power. By comparing with the current load minus idle current, we can effectively compute the energy conversion efficiency of our motor.
2- Program
#define POWER 100

#define REGMODE OUT_REGMODE_IDLE

#define STABILIZATION_DEGREES 200

#define MEASUREMENT_DEGREES (6*360)

#define LCD_LINEHEIGHT 8

// with 200g: 6*360 degrees = 45.8 cm

// with 500g: 6*360 degrees = 45.4 cm

task display();

task main() {

 byte fileHandle;

 int currentRun = 0;

 long startTime;

 string tmpNumStr;

 // prepare to write data into file:

 DeleteFile ("motor_time_data.txt");

 CreateFile ("motor_time_data.txt", 1024, fileHandle);

 start display;

 /* we assume that when the program starts, the weight

 * is at it's highest position (wind it up if not) */

 ResetAllTachoCounts(OUT_A);

/* the main program loop repeats 5 times, OR until interrupted by a button press.

 * the loop assumes the weight is at the top when the loop starts */

 while (!ButtonCount(BTNRIGHT,true) && currentRun < 5) {

 // first we drop the weight down low enough (Fwd = down)

 OnFwdEx(OUT_A,100,RESET_NONE);

 while (MotorTachoCount(OUT_A) < STABILIZATION_DEGREES + MEASUREMENT_DEGREES);

 OffEx(OUT_A,RESET_NONE);

 Wait(800);

 // now we're sitting at the bottom

 // start bringing the weight up:

 PlayTone(440,150);

 OnRevRegEx(OUT_A, POWER, REGMODE, RESET_NONE);

 // wait a bit for the speed and current to stabilize:

 while (MotorTachoCount(OUT_A) > MEASUREMENT_DEGREES);

 /* now we're in the constant-speed measurement range, so we

 * start the timer (and start reading the ammeter) */

 PlayTone(660,150);

 startTime = CurrentTick();

 // ...and keep moving up (through MEASUREMENT_DEGREES) until we get back to zero

 while (MotorTachoCount(OUT_A) > 0);

 // record time immediately

 tmpNumStr = NumToStr(CurrentTick()-startTime);

 PlayTone(880,150);

 OffEx(OUT_A,RESET_NONE);

 /* record time period in data file

 * (the third parameter requires a variable to store the number of bytes

 * written; we don't care so we give it a [presently] unused variable) */

 WriteLnString (fileHandle, tmpNumStr, startTime);

 // also display info on the screen:

 TextOut(0, 64-LCD_LINEHEIGHT*(currentRun+1), "Run ");

 NumOut(35, 64-LCD_LINEHEIGHT*(currentRun+1), currentRun+1);

 TextOut(50, 64-LCD_LINEHEIGHT*(currentRun+1), tmpNumStr);

 Wait(200);

 currentRun++;

 }

 CloseFile (fileHandle);

 TextOut(0,LCD_LINE6, "done:");

 TextOut(0,LCD_LINE7, "press");

 TextOut(0,LCD_LINE8, "r-btn");

 // motor likely overshot position 0; let's try to bring it back for next time:

 RotateMotor(OUT_A,40,-MotorTachoCount(OUT_A)); // this call blocks

 // wait for a final button press before exiting:

 while (!ButtonCount(BTNRIGHT,true));

 Stop(true); // this kills the display thread too

}

task display() {

 while (true) {

 NumOut(50,LCD_LINE8, MotorTachoCount(OUT_A));

 Wait(50);

 TextOut(50,LCD_LINE8, " ");

 }

}

3-Data

Electronic consumption:

Load with motor unplugged at rest: 0.06

Load with motor plugged at rest: 0.08

Motor sensors load : 0.02A

Load while program running w/ motor unplugged: 0.9

Estimated load taken by electronics and motor sensors: 0.11A

Compiled data from all teams:
	
	100g
	
	

	%
	Frida Tan
	Rebecca Chan
	Average

	Torq (Nm)
	N/A
	0.010987
	0.010987

	10
	1.87
	1.99
	1.93

	20
	3.38
	3.67
	3.52

	30
	4.68
	5.11
	4.89

	40
	5.94
	6.38
	6.16

	50
	6.67
	9.17
	7.92

	60
	7.69
	8.03
	7.86

	70
	8.53
	8.85
	8.69

	80
	8.92
	9.48
	9.20

	90
	8.80
	10.03
	9.42

	100
	7.76
	10.25
	9.00

	
	200g
	
	
	
	

	%
	Anton Ivan
	Hazmen Mohamed
	Leroy Perrault
	Danny Philip
	Average

	Torq (Nm)
	N/A
	0.0221706
	0.025506
	0.021582
	0.0230862

	10
	N/A
	3.53
	4.38
	3.26
	3.72

	20
	4.38
	6.17
	7.31
	5.06
	5.73

	30
	6.68
	8.14
	9.64
	6.9
	7.84

	40
	10.66
	9.58
	12.11
	9.15
	10.38

	50
	12.79
	10.69
	13.62
	11.55
	12.16

	60
	14.51
	12.14
	15.29
	11.51
	13.36

	70
	14.52
	12.26
	15.45
	10.77
	13.25

	80
	15.59
	12.63
	16.24
	12
	14.11

	90
	16.07
	12.17
	16.63
	14.05
	14.73

	100
	17.29
	13.8
	17.37
	13.78
	15.56

	
	300g
	
	
	
	
	
	

	%
	Alex & Alex
	Apul & Dennis
	David Antoine
	Kamel Antoine
	Lassonde Eranke
	Tom Simon
	Average

	Torq (Nm)
	0.035316
	0.0351295
	0.0357852
	0.032656
	0.0408907
	0.0353
	0.0358462

	10
	3.93
	4.09
	3.40
	4.39
	4.73
	3.60
	4.02

	20
	6.98
	7.19
	6.26
	7.75
	7.83
	6.00
	7.00

	30
	8.94
	10.24
	8.84
	9.87
	9.76
	8.40
	9.34

	40
	10.74
	11.94
	10.95
	10.91
	11.99
	10.00
	11.09

	50
	12.21
	12.42
	12.28
	12.65
	14.10
	11.60
	12.54

	60
	13.13
	13.80
	13.16
	12.02
	15.76
	12.70
	13.43

	70
	14.22
	14.53
	13.70
	13.01
	15.13
	13.70
	14.05

	80
	14.25
	13.90
	14.19
	13.03
	15.31
	12.60
	13.88

	90
	15.24
	15.79
	14.29
	12.48
	15.34
	11.60
	14.12

	100
	14.67
	16.18
	13.94
	15.00
	15.71
	11.60
	14.52

	
	400g
	
	
	

	%
	Ching Wai Chi
	Julier Olivier
	Tanjima Violet
	Average

	Torq (Nm)
	N/A
	0.0479464
	0.0466956
	0.047321

	10
	3.825224
	4.17
	3.91
	3.97

	20
	7.041416
	7.46
	6.74
	7.08

	30
	10.14343
	9.64
	9.10
	9.63

	40
	11.19071
	12.07
	11.51
	11.59

	50
	13.31377
	13.11
	13.05
	13.16

	60
	14.10534
	14.92
	14.25
	14.43

	70
	15.73485
	15.36
	15.40
	15.50

	80
	16.99985
	16.39
	16.17
	16.52

	90
	17.51811
	17.61
	15.17
	16.77

	100
	17.76389
	16.4
	15.11
	16.42

	
	500g
	
	
	
	

	%
	Jule & Paul
	Diego Mascarella
	Phil & Adam
	Rishi Rajalingham
	Average

	Torq (Nm)
	N/A (no radius)
	0.0542787
	0.060466
	0.05527
	0.0567

	10
	N/A (no radius)
	3.78
	5.95
	4.20
	4.64

	20
	N/A (no radius)
	5.76
	9.96
	7.10
	7.61

	30
	N/A (no radius)
	7.18
	12.56
	10.00
	9.91

	40
	N/A (no radius)
	7.91
	14.51
	11.20
	11.21

	50
	N/A (no radius)
	9.74
	15.79
	12.70
	12.74

	60
	N/A (no radius)
	15.60
	13.38
	14.50
	14.49

	70
	N/A (no radius)
	10.58
	18.79
	15.90
	15.09

	80
	N/A (no radius)
	10.98
	21.74
	16.00
	16.24

	90
	N/A (no radius)
	11.28
	18.96
	16.80
	15.68

	100
	N/A (no radius)
	10.39
	18.33
	15.80
	14.84

[image: image1.emf]Efficency as a function of motor power input

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

10 20 30 40 50 60 70 80 90 100

% of max motor power

Torque (N cm)

1.099 Ncm (100g)

2.309 Ncm (200g)

3.585 Ncm (300g)

4.732 Ncm (400g)

5.67 Ncm (500g)

[image: image2.emf]Efficiency as Function of Power Level (3.5 N-cm load)

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

0 20 40 60 80 100

Power Level

Efficiency

Total Current

Motor Only

4-Discussion

We can observe peak at 80%

Bc more power afterwards = more opposing inductive current.

Observe that the peak is more visible when we substract idle current.

Idle current is 30 -50% of total current so should be considered to get better efficient values, but since we are only interested in finding the peak, it’s ok.

Power losses:

Friction inside the motor/cheap ass plastic gears

Current induces in all metal surrounding coils sent to ground
Motor sensors

Error:

Measuring radius

String stretching and stacking differently

Motor still in speed up/decal mode during test = up: Current surge to give angular momentum

