ECSE211 Design

Lab report #1
By:

Tom Covo

260236891

Simon Foucher
260223197

1. a) What are the ranges and precisions of each sensor?
Touch sensor:

· Range: Displays a discrete value. Normally 0; 1 when pressed
Sound sensor:
· Range: In dB mode, gives a percentage of sound saturation (0 to 100)
· Precision: 1%

*In dBA mode, same range and precision, but the sound is converted to numbers using a different formula.

Light sensor:
(Ambient Light mode)

· Range: We could only get it down to 2% fully covered; maxed it out at 100% outside pointing at the sun

· Precision: 1%

(Reflected light mode)

· Range: Light saturation potentially ranging from 0-100 like in Ambient light mode, but we could only get readings from 10% to 65% in the lab.
· Precision: 1%

Motor sensing:
(Motor Rotations mode)

· Range: Counts revolutions. Will keep track of negative and positive total revolutions. We were not able to max out the range, but it should be fairly large and look like [-2n-1,+(2n-1)-1], where n=number of bits allocated in memory to store the number

· Precision: Whole-number (+-1 each full rotation)

(Motor Degrees mode)

· Range: Keeps track of degrees of rotation (360/rotation) accomplished by the motor since initial state.

· Precision: whole degrees.
b-I) What is the range and precision of the
Ultrasonic sensor?
· Range: Minimum 3cm, maximum 254cm

· Precision: 1cm

b-II) How big a target can it see, and how does it react to different kinds of targets?
Detection depends on the size of the surface, the shape of that surface/angle, its texture and its distance from the sensor.

For testing, we used the light sensor as an object (flat, hard, 2cm by 3cm polished plastic surface). When placed precisely orthogonally to the sensing vector, the object was “seen” at a maximum distance of 115cm from the sensor. Increasing the angle of the object (in relation with orthogonal orientation to the normal vector [sensor-object]) decreased the ability to sense in a non linear way. Similarly, using smaller objects or irregular shapes also reduces the sensing range.

(*It’s going be fun sensing those beer cans*)

b-III) What is its accuracy, using the wall as a target?

These tests are gives as sensed/actual:
35/35
125/124.5

200/198

Overall, it seems to have an accuracy ranging from 99% to 100% (decreasing as distance from target increases.)

2- a) Description of the programs behavior

When program starts, nothing happens. Pressing the left button causes the left (when facing the screen) motor to rotate backwards. Pressing the right button causes the left motor to rotate forwards. The orange button causes the motor to stop. The screen displays information about which button was last pressed.
Program
/**/

/* Lab 1 Program */

/* Tom Covo 260 236 891 */

/* Simon Foucher 260 223 197 */

/* Sept 14th/2007 */

/* */

/**/

/*********************************/

/* Functions Declarations */

/*********************************/

task locomotion();

task display();

/*********************************/

/* Variables Declarations */

/*********************************/

bool go = 0;

/************************/

/* Threads */

/************************/

task main() {

/*****************************/

/* Innitialising sensors */

/* and threads */

/*****************************/

 SetSensor(S1,SENSOR_LIGHT); // Configure light sensor

 SetSensorLowspeed(S2); // Configure ultrasonic sensor

 start display;

 start locomotion;

/*****************************/

/* Looking for user input */

/*****************************/

 while (true) {

 if (ButtonCount(BTNLEFT,true)) // if left button has been // pressed

 go = true;

 if (ButtonCount(BTNRIGHT,true)) // if right button has //

 been pressed

 go = false;

 Wait(10); // 10ms delay: we don't need more than 10ms // response time

 }

}

task locomotion() {

/**/

/* the locomotion pattern is broken up */

/* into short-time-interval (20ms) steps */

/* so that movement can be paused by */

/* waiting between steps. */

/**/

 for (int step = 0; true; step = (step+1)%80) {

 if (!go) {

/**/

/* If we're in pause state, stop both */

/* motors, and then wait until we go */

/* out of pause mode */

/**/

 OffEx(OUT_BC,RESET_NONE);

 do Wait(20) while (!go);

 }

/***/

/* Movement: */

/* */

/* First 72 steps (1.44 s): have the */

/* tribot move forward */

/* Remaining 8 steps (0.16 s): Tribot */

/* rotates in place */

/***/

 if (step<72)

 OnFwdEx(OUT_BC,80,RESET_NONE);

 else {

 OnFwdEx(OUT_B,80,RESET_NONE);

 OnRevEx(OUT_C,80,RESET_NONE);

 }

 Wait(20);

 }

}

task display() {

 int temp;

 while (true) {

 ClearScreen();

 TextOut(0,LCD_LINE1,"Motor A (R):");

 NumOut(80,LCD_LINE1,GetOutput(OUT_B, TachoCount));

 TextOut(0,LCD_LINE2,"Motor B (L):");

 NumOut(80,LCD_LINE2,GetOutput(OUT_C, TachoCount));

 TextOut(0,LCD_LINE4,"Light S1:");

 NumOut(60,LCD_LINE4,Sensor(S1));

 TextOut(0,LCD_LINE5,"Sonic S2:");

 NumOut(60,LCD_LINE5,temp);

 if (!go)

 TextOut(0,LCD_LINE8,"[paused]");

 temp = SensorUS(S2);

 /***/

 /* We take US reading once all other */

 /* display is done because the I2C read */

 /* takes a lot of time */

 /***/

 Wait(100);

 }

}

