Thevenin/Norton Equivalent

ECSE 210: Circuit Analysis

Lecture #5: First Order Circuits

•See textbook Section 2.6 •Review course notes of ECE 200

Some Important Points

- The part of the circuit to be replaced by a Thevenin or Norton equivalent must be linear. The remainder of the circuit can be linear or nonlinear.
- 2. If dependent sources appear in the part of a circuit to be transformed, their control variables must also be present in that part of the circuit.
- 3. The Thevenin and Norton circuits are wholly equivalent to each other.
- 4. v_{oc} and i_{sc} are related by v_{oc} = $i_{sc}R_{th}$

Applying Norton and Thevenin

- If only independent sources are present, calculate v_{oc} or i_{sc} and R_{th} using standard techniques.
- 2. If both independent and controlled sources belong to the network, determine v_{oc} and i_{sc} first, and then calculate $R_{th} = v_{oc}/i_{sc}$ afterwards.
- 3. In **no independent sources** are present, then both i_{sc} and v_{oc} are zero. In this case the equivalent Thevenin/Norton circuit is R_{th} alone. To find R_{th}, apply an arbitrary test source v to the network; determine the generated input current *i*; then calculate R_{th}=v/i.

Capacitors/Inductors

RC / RL Circuits

- 1. Contain energy storage elements (C or L).
- 2. RC/RL circuits have "memory." The response depends on the *current input and* on the *history* of the circuit.
- 3. So far we examined dc steady-state analysis (after all transients have died out and all signals are constant). For this case capacitors are open circuits and inductors are short circuits.
- 4. Now we take a look at transients.

RC Circuits

• Switch closes at t=0.

• Assume initial voltage on the capacitor $v_c(0^{-})=V_0$

<u>KCL</u>

 $\frac{v_c(t)}{R} + C \frac{dv_c(t)}{dt} = i_s \qquad \Longrightarrow \qquad \frac{dv_c(t)}{dt} + \frac{1}{R_s C} v_c(t) = \frac{i_s}{C}$

Solution of D.E.

•The constants C₁ and C₂ can be determined from the boundary conditions.

$$\frac{dv_c(t)}{dt} + \frac{1}{R_s C} v_c(t) = \frac{i_s}{C} \qquad \Longrightarrow \qquad \left(\begin{array}{c} v_c(t) = C_1 + C_2 e^{-\frac{t}{T_c}} \\ T_c = R_s C \end{array} \right)$$

$$v_{c}(t) = C_{1} + C_{2}e^{-\frac{t}{T_{c}}}$$

$$i_{s} = C_{1}$$
Find C_{1} from boundary condition at $t = \infty$
From above, $v_{c}(\infty) = C_{1}$
From circuit, $v_{c}(\infty) = i_{s}R_{s}$

$$i_{s} = C_{1}$$

$$i_{s} = C_{1}$$

$$i_{s} = C_{1}$$

$$i_{s} = C_{1}$$

RC Circuits

RC Circuits

RC Circuits

- \rightarrow Network can be replaced by it Thevenin or Norton equivalent.
- \rightarrow All circuit variables have the same form as before.
- \rightarrow All circuit variables have the same time constant $T_C = R_{th}C$
- \rightarrow Find C₁ and C₂ using same procedure as before.

RC Circuits

1. The solution for **all** circuit variables has the form: $\frac{-t}{2}$

 $x(t) = C_1 + C_2 e^{-\frac{t}{T_C}}$

2. The time constant T_c is **common** for all circuit variables $T_C = R_s C$

3. The value of x(t) for $t \le 0$, is found from the dc solution before the switch is closed (or opened).

4. C_1 is found from the dc steady state solution at $t = \infty$

5. Find voltage V_o across capacitor **before** switch is closed/opened.

6. C_2 is found from the "initial-state" solution at t=0+ (replace capacitor with voltage source V_o).

Summary

1. Assume the unknown circuit variable has the form:

$$x(t) = C_1 + C_2 e^{-\frac{1}{2}t}$$

2. Consider the equilibrium circuit that is valid at $t=0^{-}$,

 \rightarrow Capacitor replaced by an open circuit.

→ Inductor replaced by a short circuit. Calculate the steady-state capacitor voltage $V_0 = v_c(0^-)$ or inductor current $I_0 = i_L(0^-)$.

3. Consider the circuit that is valid at $t=0^+$,

 \rightarrow Capacitor replaced by voltage source V_o.

→ Inductor replaced by current source I_o . Calculate the "initial-state" solution value $x(0^+)$.

Summary

- 4. Consider the circuit valid at t = ∞
 → Capacitor replaced by an open circuit.
 → Inductor replaced by a short circuit.
 Calculate the steady-state solution value
- 5. Calculate the transient solution constants

→.
$$C_1 = x(\infty)$$

→ $C_2 = x(0^+) - x(\infty)$

6. Calculate the time constant of the circuit:

→ Determine the Thevenin resistance seen by the terminals of the storage element.

Then $T_C = R_{th}C$ for an RC circuit, and $T_C = L/R_{th}$ for an RL circuit.