ECSE 210: Circuit Analysis

Lecture \#5: First Order Circuits

Some Important Points

1. The part of the circuit to be replaced by a Thevenin or Norton equivalent must be linear. The remainder of the circuit can be linear or nonlinear.
2. If dependent sources appear in the part of a circuit to be transformed, their control variables must also be present in that part of the circuit.
3. The Thevenin and Norton circuits are wholly equivalent to each other.
4. $v_{o c}$ and $i_{s c}$ are related by $v_{o c}=i_{s c} \mathrm{R}_{\mathrm{th}}$
-See textbook Section 2.6
-Review course notes of ECE 200

Applying Norton and Thevenin

1. If only independent sources are present, calculate $v_{o c}$ or $i_{s c}$ and R_{th} using standard techniques.
2. If both independent and controlled sources belong to the network, determine $v_{o c}$ and $i_{s c}$ first, and then calculate $\mathrm{R}_{\mathrm{th}}=v_{o c} / i_{s c}$ afterwards.
3. In no independent sources are present, then both $i_{s c}$ and $v_{o c}$ are zero. In this case the equivalent Thevenin/Norton circuit is $R_{t h}$ alone. To find $R_{t h}$, apply an arbitrary test source v to the network; determine the generated input current i; then calculate $\mathrm{R}_{\mathrm{th}}=v / i$.
-See textbook Chapter 5
-Review course notes of ECE 200
$C \xrightarrow[\overbrace{-}+]{\stackrel{i \downarrow}{\downarrow}+}$
$i=C \frac{d v}{d t}$
$E_{c}=\frac{1}{2} C v^{2}$
Open circuit
in dc steady state
Voltage is continuous
$L B_{-}^{+}+$

$$
\begin{aligned}
& v=L \frac{d i}{d t} \\
& E_{L}=\frac{1}{2} L i^{2}
\end{aligned}
$$

Short circuit
in dc steady state
Current is continuous

RC / RL Circuits

1. Contain energy storage elements (C or L).
2. RC/RL circuits have "memory." The response depends on the current input and on the history of the circuit.
3. So far we examined dc steady-state analysis (after all transients have died out and all signals are constant). For this case capacitors are open circuits and inductors are short circuits.
4. Now we take a look at transients

Capacitors/Inductors

RC Circuits

- Switch closes at $\mathrm{t}=0$.
- Assume initial voltage on the capacitor $v_{c}\left(0^{-}\right)=\mathrm{V}_{\mathrm{o}}$

KCL

$\frac{v_{c}(t)}{R_{s}}+C \frac{d v_{c}(t)}{d t}=i_{s} \quad \longleftrightarrow \frac{d v_{c}(t)}{d t}+\frac{1}{R_{s} C} v_{c}(t)=\frac{i_{s}}{C}$

Solution of D.E.

$$
\frac{d x(t)}{d t}+a x(t)=A \underset{\text { Constant }}{\longrightarrow} \begin{aligned}
& \text { Solution of the form: } \\
& x(t)=C_{1}+C_{2} e^{-a t}
\end{aligned}
$$

-The constants C_{1} and C_{2} can be determined from the boundary conditions.

$$
\frac{d v_{c}(t)}{d t}+\frac{1}{R_{s} C} v_{c}(t)=\frac{i_{s}}{C} \quad \overrightarrow{v_{c}(t)=C_{1}+C_{2} e^{-\frac{t}{T_{C}}}} \begin{aligned}
& T_{C}=R_{s} C
\end{aligned}
$$

RC Circuits

Find C_{2} from boundary condition at $t=0^{+}$
$\left.\begin{array}{ll}\text { From above, } & v_{c}\left(0^{+}\right)=C_{1}+C_{2} \\ \text { From circuit, } & v_{c}\left(0^{+}\right)=V_{o}\end{array}\right\} \longleftrightarrow \begin{aligned} & C_{1}+C_{2}=V_{o} \\ & C_{2}=V_{o}-i_{s} R_{s}\end{aligned}$

RC Circuits

$v_{c}(t)=C_{1}+C_{2} e^{-\frac{t}{T_{C}}}$

Find C_{1} from boundary condition at $t=\infty$
$\left.\begin{array}{ll}\text { From above, } & v_{c}(\infty)=C_{1} \\ \text { From circuit, } & v_{c}(\infty)=i_{s} R_{s}\end{array}\right\} \longleftrightarrow C_{1}=i_{s} R_{s}$

RC Circuits

$$
\text { Suppose } \quad R_{s}=1 \Omega \quad i_{s}=1 \mathrm{~A} \quad V_{o}=2 \mathrm{~V}
$$

RC Circuits

RC Circuits

\rightarrow Network can be replaced by it Thevenin or Norton equivalent.
\rightarrow All circuit variables have the same form as before
\rightarrow All circuit variables have the same time constant $T_{C}=R_{t h} C$
\rightarrow Find C_{1} and C_{2} using same procedure as before.

RC Circuits

1. The solution for all circuit variables has the form:

$$
x(t)=C_{1}+C_{2} e^{-\frac{t}{T_{C}}}
$$

2. The time constant T_{c} is common for all circuit variables

$$
T_{C}=R_{s} C
$$

3. The value of $x(t)$ for $t<0$, is found from the dc solution before the switch is closed (or opened).
4. C_{1} is found from the dc steady state solution at $t=\infty$
5. Find voltage V_{0} across capacitor before switch is closed/opened.
6. C_{2} is found from the "initial-state" solution at $\mathrm{t}=0+$ (replace capacitor with voltage source V_{0}).

Summary

1. Assume the unknown circuit variable has the form:

$$
x(t)=C_{1}+C_{2} e^{-\frac{t}{T_{C}}}
$$

2. Consider the equilibrium circuit that is valid at $\mathrm{t}=0^{-}$, \rightarrow Capacitor replaced by an open circuit. \rightarrow Inductor replaced by a short circuit. Calculate the steady-state capacitor voltage $\mathrm{V}_{\mathrm{o}}=v_{c}\left(0^{-}\right)$or inductor current $\mathrm{I}_{\mathrm{o}}=i_{L}\left(0^{-}\right)$.
3. Consider the circuit that is valid at $\mathrm{t}=0^{+}$,
\rightarrow Capacitor replaced by voltage source V_{o}.
\rightarrow Inductor replaced by current source I_{0}.
Calculate the "initial-state" solution value $x\left(0^{+}\right)$.

Summary

4. Consider the circuit valid at $t=\infty$

\rightarrow Capacitor replaced by an open circuit.
\rightarrow Inductor replaced by a short circuit.
Calculate the steady-state solution value
5. Calculate the transient solution constants
$\rightarrow . C_{1}=x(\infty)$
$\rightarrow C_{2}=x\left(0^{+}\right)-x(\infty)$
6. Calculate the time constant of the circuit:
\rightarrow Determine the Thevenin resistance seen by the terminals of the storage element.
Then $T_{C}=R_{t h} C$ for an $R C$ circuit, and $T_{C}=L / R_{t h}$ for an
RL circuit.

