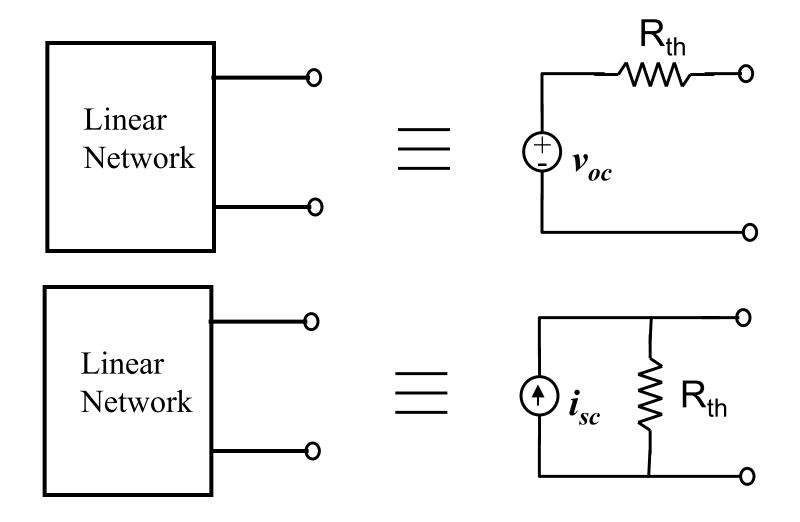
ECSE 210: Circuit Analysis

Lecture #5: First Order Circuits

Thevenin/Norton Equivalent

- •See textbook Section 2.6
- •Review course notes of ECE 200



Some Important Points

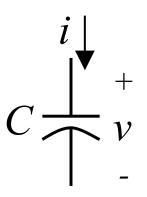
- The part of the circuit to be replaced by a
 Thevenin or Norton equivalent must be linear.
 The remainder of the circuit can be linear or nonlinear.
- 2. If dependent sources appear in the part of a circuit to be transformed, their control variables must also be present in that part of the circuit.
- 3. The Thevenin and Norton circuits are wholly equivalent to each other.
- 4. v_{oc} and i_{sc} are related by v_{oc} = i_{sc} R_{th}

Applying Norton and Thevenin

- 1. If only independent sources are present, calculate v_{oc} or i_{sc} and R_{th} using standard techniques.
- 2. If both independent and controlled sources belong to the network, determine v_{oc} and i_{sc} first, and then calculate $R_{th} = v_{oc}/i_{sc}$ afterwards.
- 3. In **no independent sources** are present, then both i_{sc} and v_{oc} are zero. In this case the equivalent Thevenin/Norton circuit is R_{th} alone. To find R_{th} , apply an arbitrary test source v to the network; determine the generated input current i; then calculate $R_{th} = v/i$.

Capacitors/Inductors

- •See textbook Chapter 5
- •Review course notes of ECE 200



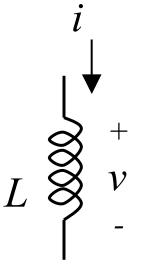
$$i = C \frac{dv}{dt}$$

$$i = C \frac{dv}{dt}$$

$$E_c = \frac{1}{2}Cv^2$$

Open circuit in dc steady state

Voltage is continuous



$$v = L \frac{di}{dt}$$

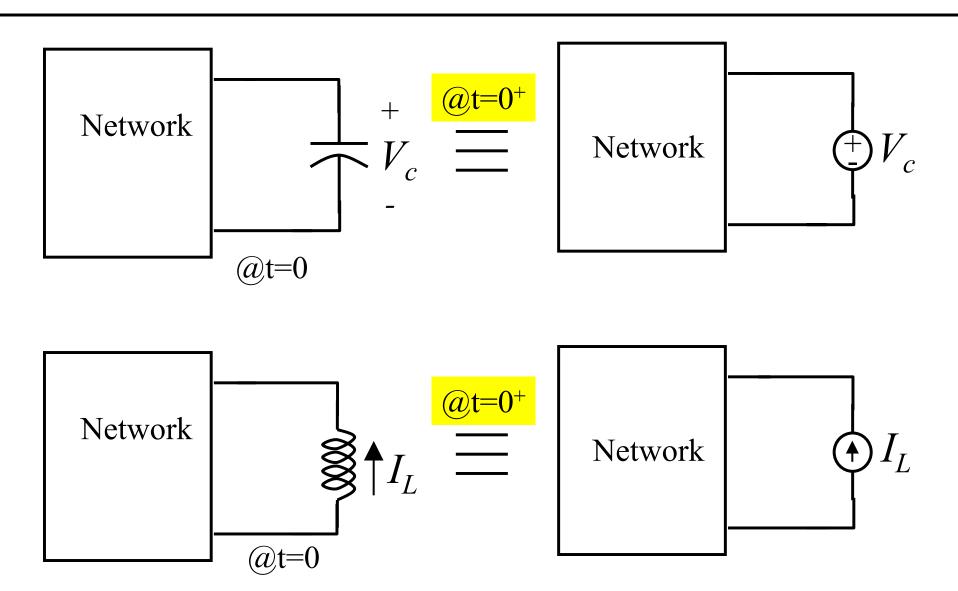
$$v = L \frac{di}{dt}$$

$$E_L = \frac{1}{2} L i^2$$

Short circuit in dc steady state

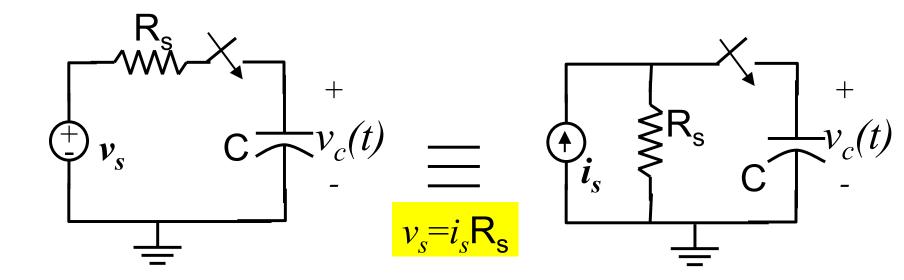
Current is continuous

Capacitors/Inductors



RC / RL Circuits

- 1. Contain energy storage elements (C or L).
- 2. RC/RL circuits have "memory." The response depends on the *current input and* on the *history* of the circuit.
- 3. So far we examined dc steady-state analysis (after all transients have died out and all signals are constant). For this case capacitors are open circuits and inductors are short circuits.
- 4. Now we take a look at transients.



- Switch closes at t=0.
- Assume initial voltage on the capacitor $v_c(0)=V_o$

<u>KCL</u>

$$\frac{v_c(t)}{R_s} + C \frac{dv_c(t)}{dt} = i_s \qquad \Longrightarrow \qquad \frac{dv_c(t)}{dt} + \frac{1}{R_sC} v_c(t) = \frac{i_s}{C}$$

Solution of D.E.

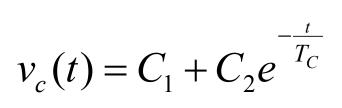
$$\frac{dx(t)}{dt} + ax(t) = A$$

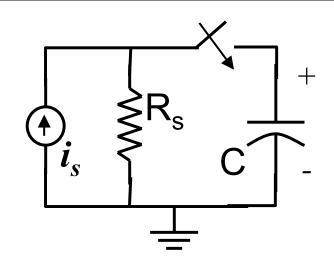
$$\begin{cases}
\text{Solution of the form:} \\
x(t) = C_1 + C_2 e^{-at}
\end{cases}$$
Constant

•The constants C_1 and C_2 can be determined from the boundary conditions.

$$\frac{dv_c(t)}{dt} + \frac{1}{R_s C} v_c(t) = \frac{i_s}{C}$$

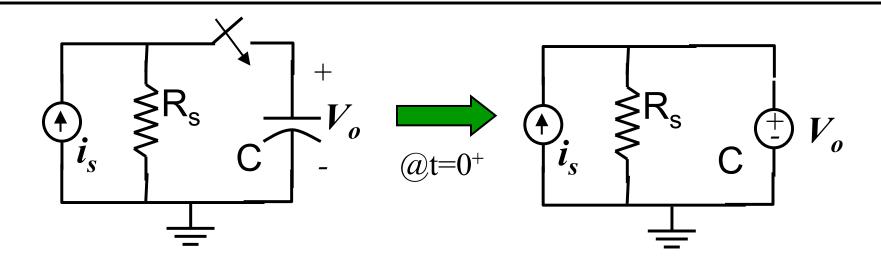
$$T_C = R_s C$$





Find C_1 from boundary condition at $t = \infty$

From above,
$$v_c(\infty) = C_1$$
 From circuit, $v_c(\infty) = i_s R_s$ $C_1 = i_s R_s$

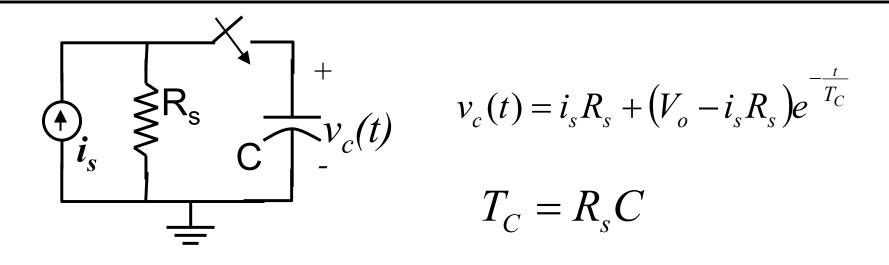


Find C_2 from boundary condition at $t=0^+$

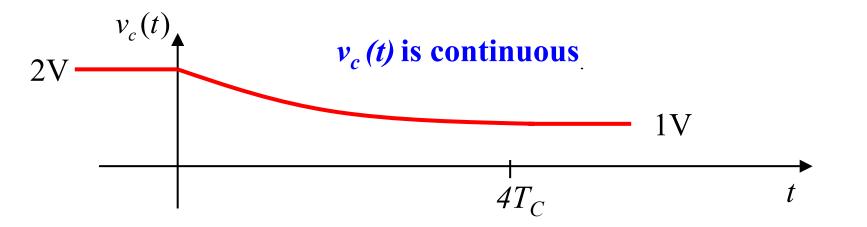
From above,
$$v_c(0^+) = C_1 + C_2$$

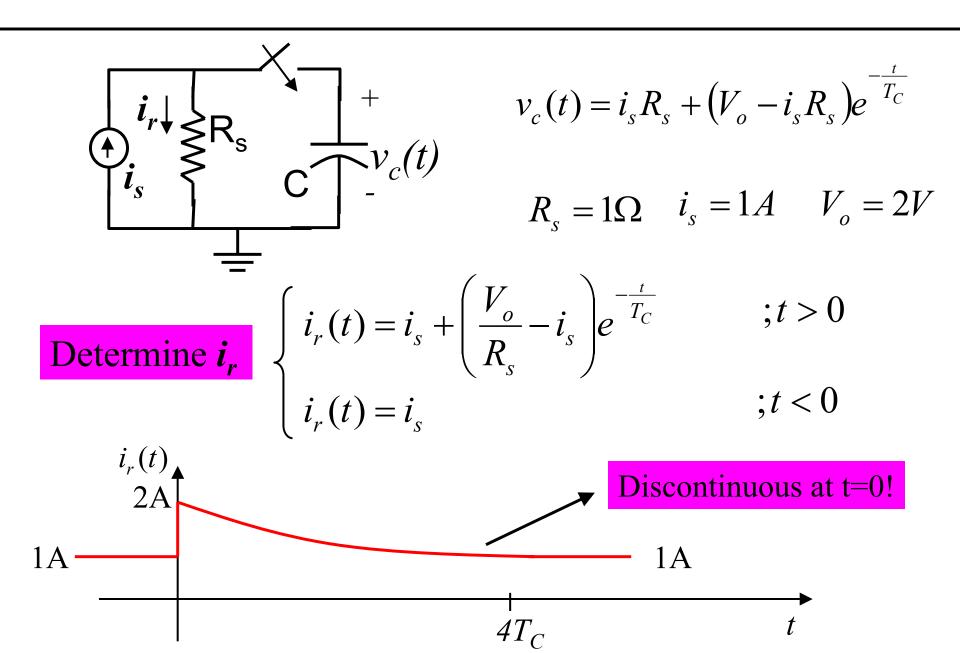
$$C_1 + C_2 = V_o$$
 From circuit,
$$v_c(0^+) = V_o$$

$$C_2 = V_o - i_s R_s$$



Suppose $R_s = 1\Omega$ $i_s = 1A$ $V_o = 2V$





1. The solution for all circuit variables has the form:

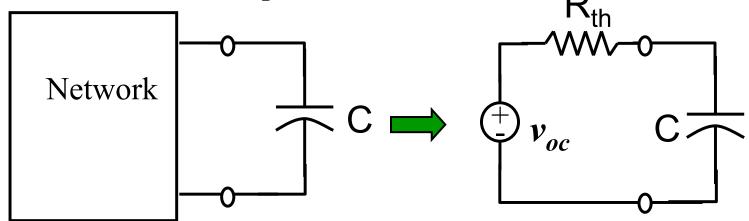
$$x(t) = C_1 + C_2 e^{-\frac{t}{T_C}}$$

2. The time constant T_c is **common** for all circuit variables

$$T_C = R_s C$$

- 3. The value of x(t) for t < 0, is found from the dc solution before the switch is closed (or opened).
- 4. C_I is found from the dc steady state solution at $t = \infty$
- 5. Find voltage V_o across capacitor **before** switch is closed/opened.
- 6. C_2 is found from the "initial-state" solution at t=0+ (replace capacitor with voltage source V_0).

What about more complex circuits?



- → Network can be replaced by it Thevenin or Norton equivalent.
- → All circuit variables have the same form as before.
- \rightarrow All circuit variables have the same time constant $T_C = R_{th}C$
- \rightarrow Find C₁ and C₂ using same procedure as before.

Summary

1. Assume the unknown circuit variable has the form:

$$x(t) = C_1 + C_2 e^{-\frac{t}{T_C}}$$

- 2. Consider the equilibrium circuit that is valid at t=0⁻,
 - → Capacitor replaced by an open circuit.
 - → Inductor replaced by a short circuit.

Calculate the steady-state capacitor voltage $V_o = v_c(0^-)$ or inductor current $I_o = i_L(0^-)$.

- 3. Consider the circuit that is valid at $t=0^+$,
 - \rightarrow Capacitor replaced by voltage source V_0 .
 - \rightarrow Inductor replaced by current source I_o .

Calculate the "initial-state" solution value $x(0^+)$.

Summary

- 4. Consider the circuit valid at $t = \infty$
 - → Capacitor replaced by an open circuit.
 - → Inductor replaced by a short circuit.

Calculate the steady-state solution value

5. Calculate the transient solution constants

$$\rightarrow$$
. $C_1 = x(\infty)$

$$\rightarrow C_2 = x(0^+) - x(\infty)$$

- 6. Calculate the time constant of the circuit:
 - → Determine the Thevenin resistance seen by the terminals of the storage element.

Then $T_C = R_{th}C$ for an RC circuit, and $T_C = L/R_{th}$ for an RL circuit.