ECSE 210: Circuit Analysis

Lecture #4: Operational Amplifiers

OpAmp Symbol

A differential amplifier.

Simplified OpAmp Symbol

- 1. Supply voltages are not shown.
- Supply currents are not shown.(Be careful with KCL)
- 3. Never do KCL at the reference node (otherwise need to include supply currents).
- 4. KCL at output node v_o is never done unless we want to calculate i_o .

OpAmp Model

Op-Amp Equivalent Circuit

- Based on this circuit, the op-amp is a unilateral device.
 - → The output voltage is determined as a function of the input, *BUT the input voltages are not affected* by the output voltage.

Some Practical Information

- 1. The input resistance R_{in} is very large, typically in the range of $100k\Omega \rightarrow 1T\Omega$.
- 2. The voltage gain **A** is very high, typically $10^5 \rightarrow 10^7$.
- 3. The output resistance R_o is very small *compared* to the recommended output load. Typically R_o is in the range $1\Omega \rightarrow 75\Omega$.
- ➡ These parameters suggest a simpler model!

Simpler Op-Amp Model

- 1. Since R_{in} is very large, assume R_{in} = infinity.
- 2. Since Ro is very small assume R_o = zero
- 3. This model appears on page 84 of the text, Figure 3.7. It depends only on the *open loop* gain *A*.

The Ideal OpAmp Model

Assume the "OpAmp Equivalent Circuit":

- 1. Since R_{in} is very large, assume R_{in} = infinity.
- 2. Since R_o is very small assume R_o = zero.
- 3. Since A is very large, assume A = infinity.

Same as previous slide

This gives the "Ideal OpAmp Model"

Condition of Linearity

The ideal op-amp is linear.

For an op-amp to be linear:

$$|v_o| \le v_{sat}$$
 $|i_o| \le i_{sat}$ $\left| \frac{dv_o}{dt} \right| \le SR$

- What is v_{sat} ?
- What is SR (slew rate)?

Virtual Short / Virtual Open

Virtual short / virtual open principles (Textbook p.151).

- 1. Virtual open: $i_{\perp} = \theta$, $i_{\perp} = \theta$
- 2. Virtual short: $v_+ = v_-$

Note: i_o is not equal to zero!

Op-Amp must function in the linear region.

Op-Amp Properties

→ Good:

- 1. High input impedance.
- 2. Low output impedance.
- 3. Large gain.

→ Bad:

The properties of the op-amp (such as its gain A) are strongly dependent on process variations, temperature variations, etc.

Use closed loop, *negative feedback* configuration.

Voltage Follower

Voltage Follower

Alternatively use virtual short principle for ideal op-amps:

$$v_+ = v_ v_o = v_I$$

Effect of Feedback on Noise

Positive Feedback

$$v_o = A(v_o - v_I) = Av_o - Av_I$$

$$\frac{v_o}{v_I} = \frac{-A}{1-A} \cong 1 \quad \Longrightarrow \quad \text{Can be shown to be an unstable}$$
 configuration.

Nodal Analysis of Op-Amp Circuits

- 1. Make use of the virtual short/virtual open principles.
- 2. Node voltages at the input are equal so one of them can be eliminated.
- 3. The currents at the input are zero and are involved in KCL equations at the *input* nodes.
- 4. The output current is *not* zero.
- 5. Make sure op-amp is in linear region so that virtual open/short principles can be applied (What happens when we have positive feedback?).

Example: Non-Inverting Amp

Virtual short

$$v_x = v_I \qquad \longrightarrow \qquad v_I = \frac{R_2}{R_1 + R_2} v_o$$

Typical Uses of OpAmps

- 1. Buffer circuit.
- 2. Voltage scaling.
- 3. Analog Computers (solution of differential equations.). OpAmp circuits can be used to perform mathematical operations (addition, subtraction, integration, etc.).
- 4. Negative resistor (active component).
- 5. Active filters.

Example: Inverting Amplifier

Textbook Exercise 4.8.3 (p.154)

Example: Inverting Amplifier

KCL at positive input
$$\frac{v_b}{5k} + \frac{v_b - v_2}{15k} + i_+ = 0$$
 (Virtual open principle)

$$v_a = v_b$$
 Virtual short principle

Example: Inverting Amplifier

First equation:

$$\frac{v_a}{20} + \frac{v_a}{10} = \frac{v_1}{20} + \frac{v_2}{10} = \frac{3v_a}{20}$$

$$4v_b = v_2$$

Third equation:

$$\rightarrow v_a = v_b$$

$$\frac{v_1}{20} + \frac{v_2}{10} = \frac{3v_2}{80} \qquad \qquad v_2 = -\frac{4}{5}v_1$$

$$v_2 = -\frac{4}{5}v_1$$

Hints

- 1. Apply KCL at the input of the op-amp and take advantage of the virtual open principle.
- 2. Never apply KCL at the output node of the opamp unless you are asked to calculate its output current.
- 3. Never apply KCL at the reference node. Remember we do not show the currents into the power supplies of the op-amp.
- 4. Make use of the virtual short principle (the input voltages of the op-amp are equal).