ECSE 210: Circuit Analysis

Lecture \#4: Operational Amplifiers

OpAmp Symbol

\Longrightarrow A differential amplifier.

Simplified OpAmp Symbol

1. Supply voltages are not shown.
2. Supply currents are not shown.
(Be careful with KCL)
3. Never do KCL at the reference node (otherwise need to include supply currents).
4. KCL at output node v_{o} is never done unless we want to calculate i_{o}.

OpAmp Model

Op-Amp Equivalent Circuit

\Rightarrow Based on this circuit, the op-amp is a unilateral device.
\rightarrow The output voltage is determined as a function of the input, BUT the input voltages are not affected by the output voltage.

Some Practical Information

1. The input resistance $R_{\text {in }}$ is very large, typically in the range of $100 \mathrm{k} \Omega \rightarrow 1 \mathrm{~T} \Omega$.
2. The voltage gain \boldsymbol{A} is very high, typically $10^{5} \rightarrow 10^{7}$.
3. The output resistance R_{0} is very small compared to the recommended output load. Typically R_{0} is in the range $1 \Omega \rightarrow 75 \Omega$.
\Rightarrow These parameters suggest a simpler model!

Simpler Op-Amp Model

1. Since $R_{\text {in }}$ is very large, assume $R_{\text {in }}=$ infinity.
2. Since Ro is very small assume $R_{o}=$ zero
3. This model appears on page 84 of the text, Figure 3.7. It depends only on the open loop gain A.

The Ideal OpAmp Model

Assume the "OpAmp Equivalent Circuit" :
Same as

1. Since $R_{\text {in }}$ is very large, assume $R_{\text {in }}=$ infinity previous
2. Since R_{0} is very small assume $R_{o}=$ zero. slide
3. Since A is very large, assume $A=$ infinity.

This gives the "Ideal OpAmp Model"

Condition of Linearity

- The ideal op-amp is linear.
- For an op-amp to be linear:

$$
\left|v_{o}\right| \leq v_{s a t} \quad\left|i_{o}\right| \leq i_{\text {sat }} \quad\left|\frac{d v_{o}}{d t}\right| \leq S R
$$

- What is $v_{\text {sat }}$?
-What is SR (slew rate)?

Virtual Short / Virtual Open

Virtual short / virtual open principles (Textbook p.151).

1. Virtual open: $\boldsymbol{i}_{-}=\mathbf{0}, \boldsymbol{i}_{+}=\mathbf{0}$
2. Virtual short: $v_{+}=v_{-}$

Note: i_{o} is not equal to zero!
Op-Amp must function in the linear region.

Op-Amp Properties

\rightarrow Good:

1. High input impedance.
2. Low output impedance.
3. Large gain.
\rightarrow Bad:
The properties of the op-amp (such as its gain A) are strongly dependent on process variations, temperature variations, etc.

\Rightarrow
Use closed loop, negative feedback configuration.

Voltage Follower

Voltage Follower

Alternatively use virtual short principle for ideal op-amps:

$$
v_{+}=v_{-} \quad \Longleftrightarrow \quad v_{o}=v_{I}
$$

Effect of Feedback on Noise

$$
\begin{aligned}
& v_{I} \\
& v_{o}=A\left(v_{+}-v_{-}\right)+v_{N} \\
& v_{+}=v_{I} \quad v_{-}=v_{o} \\
& v_{o}=A\left(v_{I}-v_{o}\right)+v_{N}=A v_{I}-A v_{o}+v_{N} \\
& v_{o}=\frac{A}{A+1} v_{I}+\frac{v_{N}}{A+1} \longrightarrow \begin{array}{l}
\text { Noise reduced by a } \\
\text { factor of } 1+\mathrm{A}
\end{array}
\end{aligned}
$$

Positive Feedback

Nodal Analysis of Op-Amp Circuits

1. Make use of the virtual short/virtual open principles.
2. Node voltages at the input are equal so one of them can be eliminated.
3. The currents at the input are zero and are involved in KCL equations at the input nodes.
4. The output current is not zero.
5. Make sure op-amp is in linear region so that virtual open/short principles can be applied (What happens when we have positive feedback?).

Example: Non-Inverting Amp

KCL at negative input

$$
\begin{aligned}
& \frac{v_{x}}{R_{2}}+\frac{v_{x}-v_{o}}{R_{1}}=0 \\
& v_{x}=\frac{R_{2}}{R_{1}+R_{2}} v_{o}
\end{aligned}
$$

Virtual short

$$
v_{x}=v_{I} \quad \Longleftrightarrow v_{I}=\frac{R_{2}}{R_{1}+R_{2}} v_{o}
$$

Typical Uses of OpAmps

1. Buffer circuit.
2. Voltage scaling.
3. Analog Computers (solution of differential equations.). OpAmp circuits can be used to perform mathematical operations (addition, subtraction, integration,etc.).
4. Negative resistor (active component).
5. Active filters.

Example: Inverting Amplifier

Textbook Exercise 4.8 .3 (p.154)

Example: Inverting Amplifier

KCL at negative input

$$
\left\{\begin{array}{l}
i_{-}=0 \\
\text { (Virtual open principle) }
\end{array}\right.
$$

$\frac{v_{a}-v_{1}}{20 k}+\frac{v_{a}-v_{2}}{10 k}+i_{-}=0$

KCL at positive input

$v_{a}=v_{b} \longrightarrow$ Virtual short principle

Example: Inverting Amplifier

First equation:

$$
\longrightarrow \frac{v_{a}}{20}+\frac{v_{a}}{10}=\frac{v_{1}}{20}+\frac{v_{2}}{10}=\frac{3 v_{a}}{20}
$$

Second equation:

$$
\begin{gathered}
\rightarrow \frac{v_{b}}{5}+\frac{v_{b}}{15}=\frac{v_{2}}{15} \\
4 v_{b}=v_{2}
\end{gathered}
$$

Third equation:

$$
\longrightarrow \quad v_{a}=v_{b}
$$

$$
\longrightarrow \frac{v_{1}}{20}+\frac{v_{2}}{10}=\frac{3 v_{2}}{80} \quad \longleftrightarrow \quad v_{2}=-\frac{4}{5} v_{1}
$$

Hints

1. Apply KCL at the input of the op-amp and take advantage of the virtual open principle.
2. Never apply KCL at the output node of the opamp unless you are asked to calculate its output current.
3. Never apply KCL at the reference node. Remember we do not show the currents into the power supplies of the op-amp.
4. Make use of the virtual short principle (the input voltages of the op-amp are equal).
