ECSE 210: Circuit Analysis

Lecture \#3: Nodal \& Mesh Analysis

Example With Two Voltage Sources

KCL at node 0: $\left(v_{0}-\mathrm{E}_{1}\right) \mathrm{g}_{1}+v_{0} \mathrm{~g}_{2}+\left(v_{0}-\mathrm{E}_{2}\right) \mathrm{g}_{3}=0$
$\longrightarrow 1$ equations, 1 unknowns, \rightarrow solve
\longrightarrow Try to choose the reference at a point where two or more voltages sources intersect. This eliminates more unknowns and therefore more equations.

KCL at node 1: $\left(v_{1}-\mathrm{E}\right) \mathrm{g}_{1}+v_{1} \mathrm{~g}_{2}+\left(v_{1}-v_{2}\right) \mathrm{g}_{3}=0$
KCL at node 2: $\left(v_{2}-v_{1}\right) \mathrm{g}_{3}+v_{2} \mathrm{~g}_{4}=0$
$\longrightarrow 2$ equations, 2 unknowns, \rightarrow solve
\longrightarrow The voltage source allowed us to save one equation (but only if we chose the right reference node or ground).

Voltage Sources With No Common Nodes

\rightarrow One extra variable (the current in the voltages source).
\rightarrow One extra equation (the voltage relation across the voltage source).

KCL at node 1: $\left(v_{l}-\mathrm{E}_{1}\right) \mathrm{g}_{1}+v_{1} \mathrm{~g}_{2}+\left(v_{l}-\mathrm{E}_{2}\right) \mathrm{g}_{3}-\boldsymbol{i}_{e}=0$
KCL at node 2: $\left(v_{2}-\mathrm{E}_{1}\right) \mathrm{g}_{4}+\left(v_{2}-\mathrm{E}_{2}\right) \mathrm{g}_{5}+i_{\mathrm{e}}=0$
Voltage source relation: $v_{2}=v_{1}+\mathrm{E}_{3}$

Supernodes

Supernode!
\rightarrow Apply KCL at supernode! That is, sum the currents leaving the supernode.

KCL at supernode:

$$
\left(v_{l}-\mathrm{E}_{1}\right) \mathrm{g}_{1}+v_{l} \mathrm{~g}_{2}+\left(v_{l}-\mathrm{E}_{2}\right) \mathrm{g}_{3}+\left(v_{1}+\mathrm{E}_{3}-\mathrm{E}_{1}\right) \mathrm{g}_{4}+\left(v_{1}+\mathrm{E}_{3}-\mathrm{E}_{2}\right) \mathrm{g}_{5}=0
$$

Dependent Voltage Source: Example

Dependent Voltage Source

Note: $i_{2}=v_{1} \mathrm{~g}_{2}$; Controlled source $=r i_{2}=r g_{2} v_{1}$
KCL at super node:
จ One unknown $v_{1} \rightarrow$ solve!

$$
\left(v_{l}-\mathrm{E}_{1}\right) \mathrm{g}_{1}+v_{1} \mathrm{~g}_{2}+\left(v_{1}-\mathrm{E}_{2}\right) \mathrm{g}_{3}+\left(v_{1}+r \mathrm{~g}_{2} v_{1}-\mathrm{E}_{1}\right) \mathrm{g}_{4}+\left(v_{1}+r \mathrm{~g}_{2} v_{1}-\mathrm{E}_{2}\right) \mathrm{g}_{5}=0
$$

What is a Mesh?

1. The circuit is divided into a collection of "smallest possible" loops.
2. Each small loop is a mesh.
3. A mesh is a loop that cannot be made smaller (i.e., divided into separate loops).
4. A mesh should not contain any elements inside it.
5. In this course we are restricted to "planar circuits".

Mesh Current

1. Each mesh is assigned a mesh current.
2. We will arbitrarily choose to define all mesh currents in a clockwise direction.
3. Do not confuse "mesh currents" and "branch currents."

KVL equations

$$
\begin{aligned}
& -\mathrm{E}_{\mathrm{a}}+\mathrm{R}_{1} i_{1}+\mathrm{R}_{2}\left(i_{1}-i_{2}\right)=0 \\
& \mathrm{R}_{2}\left(i_{2}-i_{1}\right)+\mathrm{R}_{3} i_{2}+\mathrm{E}_{\mathrm{b}}=0
\end{aligned}
$$

Two equations, two unknowns

KVL equations

1. We choose to start from the lower left node and move clockwise.
2. We choose to add "voltages drops" across elements.
3. Be careful not to violate passive sign convention.
4. Again, do not confuse mesh currents with branch currents.

Current Source

Current Source: Example 2

Example

