Example with Voltage Source

ECSE 210: Circuit Analysis

Lecture #3: Nodal & Mesh Analysis

KCL at node 1: $(v_1-E)g_1 + v_1g_2 + (v_1-v_2)g_3 = 0$ KCL at node 2: $(v_2-v_1)g_3 + v_2g_4 = 0$

▶ 2 equations, 2 unknowns, \rightarrow solve

The voltage source allowed us to save one equation (but only if we chose the right reference node or ground).

Example With Two Voltage Sources

KCL at node 0: $(v_0 - E_1)g_1 + v_0 g_2 + (v_0 - E_2)g_3 = 0$

• 1 equations, 1 unknowns, \rightarrow solve

Try to choose the reference at a point where two or more voltages sources intersect. This eliminates more unknowns and therefore more equations.

Voltage Sources With No Common Nodes

→ One extra variable (the current in the voltages source).

→ One extra equation (the voltage relation across the voltage source).

KCL at node 1: $(v_1-E_1)g_1 + v_1g_2 + (v_1-E_2)g_3 - i_e = 0$ KCL at node 2: $(v_2-E_1)g_4 + (v_2-E_2)g_5 + i_e = 0$ Voltage source relation: $v_2 = v_1+E_3$

3 equations 3 unknowns

Supernodes

 $(v_1-E_1)g_1 + v_1g_2 + (v_1-E_2)g_3 + (v_1+E_3-E_1)g_4 + (v_1+E_3-E_2)g_5 = 0$

Dependent Voltage Source

Dependent Voltage Source: Example

What is a Mesh?

- 1. The circuit is divided into a collection of "smallest possible" loops.
- 2. Each small loop is a mesh.
- 3. A mesh is a loop that cannot be made smaller (i.e., divided into separate loops).
- 4. A mesh should not contain any elements inside it.
- 5. In this course we are restricted to "planar circuits".

Mesh Current

- 1. Each mesh is assigned a mesh current.
- 2. We will arbitrarily choose to define all mesh currents in a clockwise direction.
- 3. Do not confuse "mesh currents" and "branch currents."

KVL equations

- 1. We choose to start from the lower left node and move clockwise.
- 2. We choose to add "voltages drops" across elements.
- 3. Be careful not to violate passive sign convention.
- 4. Again, do not confuse mesh currents with branch currents.

KVL equations

 $-\mathbf{E}_{a} + \mathbf{R}_{1}i_{1} + \mathbf{R}_{2}(i_{1}-i_{2}) = 0$

Current Source

Current Source: Example 2

Supermesh: Open Circuit Current Sources

Example

