ECSE 210: Circuit Analysis Lecture \#29:
 Two-Port Networks

Single-Port Network

The linear network is connected to the circuit through a single pair of terminals (A-B), called a port.
\rightarrow Network is called a single-port or one-port network.

Example: Two Port Network

\rightarrow A single-port network may consist of a single circuit element (e.g., R, L or C) or a complex interconnection of such elements.

Single port network

Example: Single Port Network

Single port network

Two-Port Network

\rightarrow This linear network is called a two-port network.
\rightarrow Generally, the terminal pairs or ports are identified as:
A-B: input port or the linear network;
C-D: output port of the linear network.

Example: Two-Port Network

Two-port network

Two-Port Networks

\rightarrow Most practical circuits and systems have at least two ports (an input and an output).
\rightarrow Two-ports are used extensively in the modeling of many electronic devices and system components:

1. Transistors and OpAmps
2. Transformers and transmission lines
\rightarrow In general, a two-port linear network may contain any combination of \boldsymbol{R}, L and C circuit elements, op-amps and controlled sources.

* However, independent sources are excluded.
\rightarrow The operation of a two-port network is fully described by the voltage-current relationships at the two ports, called the two port-parameters.

Two-Port vs. Single-Port Parameters

\rightarrow The driving point impedance or admittance (input impedance or admittance) completely describe the circuit.

Two-Port Admittance Parameters

\rightarrow Commonly referred to as the Y-parameters.

\rightarrow Note the voltage polarities, and current directions.
\rightarrow Using the principle of superposition we get:

$$
\begin{aligned}
& \mathbf{I}_{1}=y_{11} \mathbf{V}_{1}+y_{12} \mathbf{V}_{2} \\
& \mathbf{I}_{2}=y_{21} \mathbf{V}_{1}+y_{22} \mathbf{V}_{2}
\end{aligned}
$$

Y- Parameters

$$
\left.\begin{array}{l}
\mathbf{I}_{1}=y_{11} \mathbf{V}_{1}+y_{12} \mathbf{V}_{2} \\
\mathbf{I}_{2}=y_{21} \mathbf{V}_{1}+y_{22} \mathbf{V}_{2} \quad \square
\end{array} \begin{array}{l}
\mathbf{I}_{1} \\
\mathbf{I}_{2}
\end{array}\right]=\left[\begin{array}{ll}
y_{11} & y_{12} \\
y_{21} & y_{22}
\end{array}\right]\left[\begin{array}{c}
\mathbf{V}_{1} \\
\mathbf{V}_{2}
\end{array}\right]
$$

$\rightarrow y_{i j}$ are complex constants of proportionality with units of siemens (S).
\rightarrow Two equations describe the two-port operation.
\rightarrow Once $y_{11}, y_{12}, y_{21}, y_{22}$ are known, the input/output operation of the two-port network is completely defined.
$\rightarrow y_{i j}$ are the admittance parameters or Y-parameters.
\rightarrow The Y-parameter matrix is:

$$
\mathbf{Y}=\left[\begin{array}{ll}
y_{11} & y_{12} \\
y_{21} & y_{22}
\end{array}\right]
$$

Y- Parameters

$$
\begin{aligned}
& \mathbf{I}_{1}=y_{11} \mathbf{V}_{1}+y_{12} \mathbf{V}_{2} \\
& \mathbf{I}_{2}=y_{21} \mathbf{V}_{1}+y_{22} \mathbf{V}_{2} \\
& \mathbf{V}_{2}=0 \quad \rightarrow \quad\left[\begin{array}{l}
\mathbf{I}_{1} \\
\mathbf{I}_{2}
\end{array}\right]=\left[\begin{array}{ll}
y_{11} & y_{12} \\
y_{21} & y_{22}
\end{array}\right]\left[\begin{array}{l}
\mathbf{V}_{1} \\
\mathbf{V}_{2}
\end{array}\right] \\
& \mathbf{V}_{1}=0 \quad \rightarrow \quad \mathbf{I}_{1} \quad \mathbf{I}_{11}=y_{12} \mathbf{I}_{2} \quad \rightarrow y_{12}=\left.\frac{\mathbf{I}_{1}}{\mathbf{V}_{1}}\right|_{\mathbf{V}_{2}=0} \\
& \mathbf{V}_{2}=0 \quad \rightarrow \quad \mathbf{I}_{2}=y_{21} \mathbf{V}_{1} \quad \rightarrow \quad y_{21}=\left.\frac{\mathbf{I}_{2}}{\mathbf{V}_{1}}\right|_{\mathbf{V}_{2}=0} \\
& \mathbf{V}_{1}=0 \quad \rightarrow \quad \mathbf{I}_{2}=y_{22} \mathbf{V}_{2} \quad \rightarrow \quad y_{22}=\left.\frac{\mathbf{I}_{2}}{\mathbf{V}_{2}}\right|_{\mathbf{V}_{1}=0}
\end{aligned}
$$

Example

\rightarrow Find the Y-parameters for the two-port below.

$$
\left.\begin{array}{l}
\mathbf{I}_{1}=y_{11} \mathbf{V}_{1}+y_{12} \mathbf{V}_{2} \\
\mathbf{I}_{2}=y_{21} \mathbf{V}_{1}+y_{22} \mathbf{V}_{2} \quad \square
\end{array} \begin{array}{l}
\mathbf{I}_{1} \\
\mathbf{I}_{2}
\end{array}\right]=\left[\begin{array}{ll}
y_{11} & y_{12} \\
y_{21} & y_{22}
\end{array}\right]\left[\begin{array}{c}
\mathbf{V}_{1} \\
\mathbf{V}_{2}
\end{array}\right]
$$

Example

\rightarrow Y-parameters can be found "experimentally"

$$
\begin{aligned}
& \mathbf{I}_{1}=y_{11} \mathbf{V}_{1}+y_{12} \mathbf{V}_{2} \\
& \left.\mathbf{I}_{2}=y_{21} \mathbf{V}_{1}+y_{22} \mathbf{V}_{2} \quad \longrightarrow\left[\begin{array}{l}
\mathbf{I}_{1} \\
\mathbf{I}_{2}
\end{array}\right]=\left[\begin{array}{ll}
y_{11} & y_{12} \\
y_{21} & y_{22}
\end{array}\right]\left[\begin{array}{c}
\mathbf{V}_{1} \\
\mathbf{V}_{2}
\end{array}\right], ~\right]
\end{aligned}
$$

From the above equations: $\quad \mathbf{I}_{1}=y_{11}(1 V)$
$\mathbf{I}_{2}=y_{21}(1 V)$

Example

Example

$$
\begin{array}{l|l}
\mathbf{V}_{2}=(6+3 \| 6) \mathbf{I}_{2}=8 \mathbf{I}_{2} & \mathbf{I}_{1}=-\frac{6}{6+3} \mathbf{I}_{2}=-\frac{1}{12} \mathbf{V}_{2} \\
y_{22}=\left.\frac{\mathbf{I}_{2}}{\mathbf{V}_{2}}\right|_{\mathbf{V}_{1}=0}=\frac{1}{8} S & y_{21}=\left.\frac{\mathbf{I}_{1}}{\mathbf{V}_{2}}\right|_{\mathbf{V}_{1}=0}=-\frac{1}{12} S
\end{array}
$$

Example

$$
\begin{aligned}
& \mathbf{I}_{1}=\frac{1}{6} \mathbf{V}_{1}-\frac{1}{12} \mathbf{V}_{2} \\
& \mathbf{I}_{2}=-\frac{1}{12} \mathbf{V}_{1}+\frac{1}{8} \mathbf{V}_{2} \\
& {\left[\begin{array}{l}
\mathbf{I}_{1} \\
\mathbf{I}_{2}
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{6} & \frac{-1}{12} \\
\frac{-1}{12} & \frac{1}{8}
\end{array}\right]\left[\begin{array}{l}
\mathbf{V}_{1} \\
\mathbf{V}_{2}
\end{array}\right]}
\end{aligned}
$$

Example 2

π-network

