# **ECSE 210: Circuit Analysis**

Lecture #29:

**Two-Port Networks** 

# **Single-Port Network**



The linear network is connected to the circuit through a *single pair of terminals* (A-B), called a *port*.

→ Network is called a *single-port* or *one-port* network.

# **Example: Two Port Network**

→ A single-port network may consist of a single circuit element (e.g., R, L or C) or a complex interconnection of such elements.



#### **Example: Single Port Network**



## **Two-Port Network**



- $\rightarrow$  This linear network is called a *two-port* network.
- $\rightarrow$  Generally, the terminal pairs or *ports* are identified as:
  - A-B: *input port* or the linear network;
  - C-D: *output port* of the linear network.

#### **Example: Two-Port Network**



# **Two-Port Networks**

- → Most practical circuits and systems have at least two ports (an input and an output).
- → Two-ports are used extensively in the modeling of many electronic devices and system components:
  - 1. Transistors and OpAmps
  - 2. Transformers and transmission lines
- → In general, a two-port linear network may contain any combination of *R*, *L* and *C* circuit elements, op-amps and controlled sources.

#### \* However, *independent* sources are excluded.

→ The operation of a two-port network is fully described by the voltage-current relationships at the two ports, called the two port-parameters.

# **Two-Port vs. Single-Port Parameters**

→ The driving point impedance or admittance (input impedance or admittance) completely describe the circuit.



# **Two-Port Admittance Parameters**

 $\rightarrow$  Commonly referred to as the *Y-parameters*.



- $\rightarrow$  Note the voltage polarities, and current directions.
- $\rightarrow$  Using the principle of superposition we get:

$$\mathbf{I}_{1} = y_{11}\mathbf{V}_{1} + y_{12}\mathbf{V}_{2}$$
$$\mathbf{I}_{2} = y_{21}\mathbf{V}_{1} + y_{22}\mathbf{V}_{2}$$

# **Y- Parameters**



- →  $y_{ij}$  are complex constants of proportionality with units of siemens (S).
- $\rightarrow$  Two equations describe the two-port operation.
- → Once  $y_{11}$ ,  $y_{12}$ ,  $y_{21}$ ,  $y_{22}$  are known, the input/output operation of the two-port network is *completely* defined.
- $\rightarrow$  y<sub>ii</sub> are the **admittance parameters** or Y-parameters.
- $\rightarrow$  The Y-parameter matrix is:

$$\mathbf{Y} = \begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix}$$

#### **Y- Parameters**



→ Find the Y-parameters for the two-port below.

$$\mathbf{I}_{1} = y_{11}\mathbf{V}_{1} + y_{12}\mathbf{V}_{2}$$
$$\mathbf{I}_{2} = y_{21}\mathbf{V}_{1} + y_{22}\mathbf{V}_{2}$$
$$\mathbf{I}_{1} = \begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix} \begin{bmatrix} \mathbf{V}_{1} \\ \mathbf{V}_{2} \end{bmatrix}$$



→ Y-parameters can be found "experimentally"









