ECSE 210: Circuit Analysis Lecture \#27:

Resonant Circuits

Parallel Resonant Circuit

$$
\begin{gathered}
\mathbf{I}_{\mathbf{i}}(\mathbf{s}) \overbrace{o} \mathbf{V}_{o}(\mathbf{s}) \\
\mathbf{H}(\mathbf{s})=\frac{\mathbf{V}_{\mathbf{o}}(\mathbf{s})}{\mathbf{I}_{\mathbf{i}}(\mathbf{s})}=\mathbf{Z}(\mathbf{s})=\frac{1}{\frac{1}{R}+\frac{1}{\mathbf{s} L}+\mathbf{s} C}=\frac{1}{G+\frac{1}{\mathbf{s} L}+\mathbf{s} C} \\
\mathbf{H}(\mathbf{s})=\frac{\mathbf{V}_{\mathbf{o}}(\mathbf{s})}{\mathbf{I}_{\mathbf{i}}(\mathbf{s})}=\mathbf{Z}(\mathbf{s})=\frac{\frac{1}{C} \mathbf{s}}{\mathbf{s}^{2}+\frac{G}{C} \mathbf{s}+\frac{1}{L C}}
\end{gathered}
$$

Parallel Resonant Circuit

$$
\begin{aligned}
& \mathbf{H}(s)=\frac{\mathbf{V}_{o}(\mathbf{s})}{\mathbf{I}_{\mathbf{i}}(\mathbf{s})}=\mathbf{Z}(\mathbf{s})=\frac{\frac{1}{C} \mathbf{s}}{\mathbf{s}^{2}+\frac{G}{L} \mathbf{s}+\frac{1}{L C}} \\
& \omega_{o}=\sqrt{\frac{1}{L C}} \quad \zeta=\frac{G / C}{2 \omega_{o}}
\end{aligned}
$$

$$
\text { or } \quad \zeta=\frac{G / C}{2 \omega_{o}}=\frac{G}{C} \frac{1}{2} \sqrt{L C}=\frac{1}{2 R} \sqrt{\frac{L}{C}}
$$

Parallel Resonant Circuit

Also

$\mathbf{Z}(\mathbf{s})$ is real when:

$$
\begin{aligned}
& \omega_{r}=\omega_{o}=\sqrt{\frac{1}{L C}} \longleftrightarrow \text { Resonant frequency } \\
& Q_{o}=\omega_{o} R C=\frac{R}{L \omega_{o}}=R \sqrt{\frac{C}{L}}
\end{aligned}
$$

Series/Parallel Resonant Circuit

Series/Parallel Resonant Circuit

$$
\omega_{o}=\sqrt{\omega_{1} \omega_{2}}
$$

Resonance

We consider the circuit to be in resonance when the admittance or impedance is real. The frequency at which this occurs is the resonant frequency.

Example

Find the resonant frequency of the following circuit:

$$
\begin{aligned}
& \mathbf{Y}(j \omega)=j \omega C+\frac{1}{R+j \omega L}=j \omega C+\frac{R-j \omega L}{R^{2}+\omega^{2} L^{2}} \\
& \mathbf{Y}(j \omega)=\frac{R}{R^{2}+\omega^{2} L^{2}}+j\left(\omega C-\frac{\omega L}{R^{2}+\omega^{2} L^{2}}\right)
\end{aligned}
$$

Circuit at resonance when Y is real. Therefore:

$$
\begin{aligned}
& \omega C-\frac{\omega L}{R^{2}+\omega^{2} L^{2}}=0 \\
& \longleftrightarrow \omega_{r}=\sqrt{\frac{1}{L C}-\frac{R^{2}}{L^{2}}}
\end{aligned}
$$

Practical Inductors

In practice, real components have more complex models. For example, an inductor coil would have a resistance associated with it due to the non-ideal conductor. In this case, losses are associated with the inductor, and a quality factor can be defined.

$$
Q=2 \pi \frac{\text { maximum total energy stored }}{\text { energy dissipated per cycle }}
$$

The quality factor is a function of frequency.

Practical Inductors

$$
i(t)=I_{m} \cos (\omega t)
$$

Maximum energy stored: $\quad E_{L}=\frac{1}{2} L_{s} I_{m}^{2}$
Average power dissipated in resistor:

$$
P_{R}=\frac{1}{2} R_{s} I_{m}^{2}
$$

Energy dissipated per cycle: $\quad E_{R}=T P_{R}=\left(\frac{2 \pi}{\omega}\right)\left(\frac{1}{2} R I_{m}^{2}\right)$

$$
Q=2 \pi \frac{\frac{1}{2} L_{s} I_{m}^{2}}{\left(\frac{2 \pi}{\omega}\right)\left(\frac{1}{2} R_{s} I_{m}^{2}\right)}=\frac{\omega L_{s}}{R_{s}}=\frac{X_{s}}{R_{s}} \Leftarrow \text { function of frequency }
$$

Practical Tuned Circuits

Ideal

Practical

Practical Tuned Circuits

Practical

Convenient

$$
\begin{aligned}
\mathbf{Y}(j \omega) & =\frac{R}{R^{2}+\omega^{2} L^{2}}+j\left(\omega C-\frac{\omega L}{R^{2}+\omega^{2} L^{2}}\right) \\
& =R_{p}+j \omega C+\frac{1}{j \omega L_{p}}
\end{aligned}
$$

Practical Inductors

Consider the above circuits. Find the conductance G_{p} and susceptance B_{p} in terms of R_{s} and X_{s} so that the circuits have the same impedance at a frequency ω.

$$
\begin{aligned}
& Y(j \omega)=G_{p}+j B_{p}=\frac{1}{Z(j \omega)}=\frac{1}{R_{s}+j X_{s}}=\frac{R_{s}-j X_{s}}{R_{s}^{2}+X_{s}^{2}} \\
& G_{p}=\frac{R_{s}}{R_{s}^{2}+X_{s}^{2}} \quad B_{p}=\frac{-X_{s}}{R_{s}^{2}+X_{s}^{2}}
\end{aligned}
$$

Practical Inductors

Consider the above circuits. Find \mathbf{R}_{p} and L_{p} in terms of \mathbf{R}_{s} and L_{s} at a frequency ω.

$$
B_{p}=-\frac{1}{\omega L_{p}}=\frac{-X_{s}}{R_{s}^{2}+X_{s}^{2}}=\frac{-\omega L_{s}}{R_{s}^{2}+\left(\omega L_{s}\right)^{2}}
$$

$$
G_{p}=\frac{R_{s}}{R_{s}^{2}+X_{s}^{2}}
$$

$$
L_{p}=\frac{R_{s}^{2}+\left(\omega L_{s}\right)^{2}}{\omega^{2} L_{s}}=\frac{R_{s}^{2}}{\omega^{2} L_{s}}+L_{s}=L_{s}\left(1+\frac{1}{Q^{2}}\right)
$$

$$
Q=\frac{\omega L_{s}}{R_{s}}=\frac{X_{s}}{R_{s}}
$$

$$
L_{p} \cong L_{s} \text { for } Q>10
$$

Practical Inductors

Consider the above circuits. Find R_{p} and L_{p} in terms of \mathbf{R}_{s} and L_{s} at a frequency ω.

$$
\begin{array}{ll}
G_{p}=\frac{1}{R_{p}}=\frac{R_{s}}{R_{s}^{2}+X_{s}^{2}} & Q=\frac{\omega L_{s}}{R_{s}}=\frac{X_{s}}{R_{s}} \\
& R_{p}=R_{s}\left(1+Q^{2}\right) \\
& R_{p} \cong R_{s} Q^{2}=Q \omega L_{s} \text { for } Q>10
\end{array}
$$

