# ECSE 210: Circuit Analysis Lecture #27: Resonant Circuits

### **Parallel Resonant Circuit**



### **Parallel Resonant Circuit**



or

$$\zeta = \frac{G/C}{2\omega_o} = \frac{G}{C} \frac{1}{2} \sqrt{LC} = \frac{1}{2R} \sqrt{\frac{L}{C}}$$

# **Parallel Resonant Circuit**

#### Also

Z(s) is real when:  $\omega_r = \omega_o = \sqrt{\frac{1}{LC}}$  Resonant frequency  $Q_o = \omega_o RC = \frac{R}{L\omega_o} = R\sqrt{\frac{C}{L}}$ 

# **Series/Parallel Resonant Circuit**





# **Series/Parallel Resonant Circuit**



$$\omega_o = \sqrt{\omega_1 \omega_2}$$

# Resonance

We consider the circuit to be in resonance when the admittance or impedance is real. The frequency at which this occurs is the resonant frequency.



# Example

#### Find the resonant frequency of the following circuit:

$$\mathbf{Y}(j\omega) = j\omega C + \frac{1}{R + j\omega L} = j\omega C + \frac{R - j\omega L}{R^2 + \omega^2 L^2} \quad \mathbf{Y}(j\omega) = \frac{R}{R^2 + \omega^2 L^2} + j\left(\omega C - \frac{\omega L}{R^2 + \omega^2 L^2}\right)$$

Circuit at resonance when Y is real. Therefore:



In practice, **real** components have more complex models. For example, an **inductor coil** would have a resistance associated with it due to the non-ideal conductor. In this case, losses are associated with the inductor, and a quality factor can be defined.

$$Q = 2\pi \frac{\text{maximum total energy stored}}{\text{energy dissipated per cycle}}$$

The quality factor is a **function of frequency**.



$$i(t) = I_m \cos(\omega t)$$

Maximum energy stored:  $E_L = \frac{1}{2} L_s I_m^2$ 

Average power dissipated in resistor:

$$P_R = \frac{1}{2} R_s I_m^2$$



Energy dissipated per cycle:  $E_R = TP_R = \left(\frac{2\pi}{\omega}\right) \left(\frac{1}{2}RI_m^2\right)$ 

 $Q = 2\pi \frac{\frac{1}{2}L_s I_m^2}{\left(\frac{2\pi}{\omega}\right)\left(\frac{1}{2}R_s I_m^2\right)} = \frac{\omega L_s}{R_s} = \frac{X_s}{R_s} \quad \Leftarrow \text{ function of frequency}$ 

### **Practical Tuned Circuits**



### **Practical Tuned Circuits**





Consider the above circuits. Find the conductance  $G_p$  and susceptance  $B_p$  in terms of  $R_s$  and  $X_s$  so that the circuits have the same impedance at a frequency  $\omega$ .

$$Y(j\omega) = G_p + jB_p = \frac{1}{Z(j\omega)} = \frac{1}{R_s + jX_s} = \frac{R_s - jX_s}{R_s^2 + X_s^2}$$

$$G_p = \frac{R_s}{R_s^2 + X_s^2}$$
  $B_p = \frac{-X_s}{R_s^2 + X_s^2}$ 



Consider the above circuits. Find  $R_p$  and  $L_p$  in terms of  $R_s$  and  $L_s$  at a frequency  $\omega$ .

$$B_{p} = -\frac{1}{\omega L_{p}} = \frac{-X_{s}}{R_{s}^{2} + X_{s}^{2}} = \frac{-\omega L_{s}}{R_{s}^{2} + (\omega L_{s})^{2}}$$

$$G_p = \frac{R_s}{R_s^2 + X_s^2}$$

$$L_{p} = \frac{R_{s}^{2} + (\omega L_{s})^{2}}{\omega^{2} L_{s}} = \frac{R_{s}^{2}}{\omega^{2} L_{s}} + L_{s} = L_{s} \left(1 + \frac{1}{Q^{2}}\right)$$

$$Q = \frac{\omega L_s}{R_s} = \frac{X_s}{R_s}$$

$$L_p \cong L_s$$
 for  $Q > 10$ 



Consider the above circuits. Find  $R_p$  and  $L_p$  in terms of  $R_s$  and  $L_s$  at a frequency  $\omega$ .

$$G_p = \frac{1}{R_p} = \frac{R_s}{R_s^2 + X_s^2}$$

$$Q = \frac{\omega L_s}{R_s} = \frac{X_s}{R_s}$$

$$R_{p} = R_{s}(1+Q^{2})$$

$$R_{p} \cong R_{s}Q^{2} = Q\omega L_{s} \text{ for } Q > 10$$