ECSE 210: Circuit Analysis
Lecture #25:

Generalized Phasors



Damped Sinusoids

X(t)

x(t)=X e” cos(at + @)




Growing Sinusoids

x(t)=X e” cos(at + @)




Just Plain Sinusoids

x(t)=X e” cos(wt + @)
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Generalized Phasors

Can phasors describe damped sinusoids?

X=X e"=X /¢
x(t) = Re[Xe’”]

x(t) = Re[ X eTe/ ™ ] generalized
- . frequency
— Re :Xmej¢e(6+ja))t] f

Thus x(f)=Re[X e"] where s =0+ ja)\




Generalized Phasors

Example:
x(t) =25e™" cos(2¢t +30°)

time domain

X(s)=25230% s =-1+2j

frequency domain

Thus
x(2) = Re[25.£30°" ]; s=—1+2j



Generalized Phasors

How many complex frequencies are there for:
x(t)=X e” cos(at + @)
1 1

Recall: cos(arf + @) = — /@ 4~ g i@+
2 2
X .
(wt+9) —j(ot+¢) _
x(t) = e A= e Two generalized
complex
= &e”}e(a””)’ +—X’” o /P plo—io)t > frequencies s,
2 2 and s, such that
=Xe" +X'e™ 51752




Transfer Function/System Response

~ V., (%)

Consider: R L
—— W0
V(OO €=
H(s) = V,(s) 25

V.(s) s°+6s+25

(s’ +6s+25)V (s)=25V,(s)

R=6Q
L=1H
C=0.04F



Transfer Function/System Response

(s’ +6s+25)V (s)=25V,(s)

Question: Is there a frequency s such that the
above system has an output when the input is

zero? )
" +6s+25=0 homogeneous equation

S1—3+4j S2—3—4j system poles

Thus Vv, (H)=Ve" +V e™
. (—3+4 /)t * (-3-4))t
=V e +V e

_ VoIt IHAD Ly i o34
n n



Transfer Function/System Response

v (l‘) 4 e/ (ANt Vne—j¢e(—3—4j)t
_ Vne—sz (e JA4) | j(4t+¢))
=2V e cos(4t + @)
= A e cos(4t)+ B e~ sin(4¢)
— The poles of the system determine the natural response.

—> For stable systems the poles are on the left half of the
complex plane



Transfer Function/System Response

- The natural and forced responses of a circuit may
be obtained from its network function in a
straightforward manner.

- Consider a circuit with the following 1/O

relationship.
d"x, d"'x dx,
a,—>+a, ——>++a, +a, =
dt dt dt
d"x. d"'x, dx.
=b,——+b, ,——-+--+b —-+b,
dt dt dt

Note: RHS terms = forcing function for ODE



Transfer Function/System Response

X () bs"+b s""'+L +bs+b,
X() as"+a, s +L +as+a,

H(s) =

Hence, the characteristic polynomial (of unforced system):

n n-1 .
as +a, s +L +as+a,=0

Roots of the characteristic polynomial (poles of H(s))
yield the general solution to the homogeneous
equation (natural response).




Example

Assuming zero initial conditions, find Z,(?).

i, (1)

120
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602

2cos(2t) (O
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£, (1)
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Example

L(S) 120 60 I,(s)
=AW\ ANWW—"
Vi) O §3S égs
I (s)= Vv, (s) _ (6+58)V, ()
7 124 3s|[(6+2s) 68+ 78s+ 72
I (s) = 3s I (s) = sV, (s)

6+5s ¢ 2(s+ 1) (s +12)
Voltage divider



Example

3s I (s)= sV, (s)
6+5s ¢ 2(s+ ) (s +12)

I,(s) =

From the poles we can write the natural response
in the form:

- — —12
i (1)=Ae "' +A,e



Example

Forced response due to the input (forcing function):

v,(t) =3cos(2t)

I,(s) B S

H(s) = =
V.(s) 2(s+1)(s+12)
H(j2)=— j2. =0.0368/17.1
2(j2+1)(j2+12)

i,(t)=3x%0.0368cos(2t+17.1°)
=0.11cos(2t+17.1°)



Example

Total response:

i(t) =1i,()+i,(1)=
= Ae”' +A,e”* +0.11cos(2¢ +17.1°)

- Need two boundary conditions to find the
two undetermined parameters.

—> For stable systems (poles in the left half plane), the forced
response 1s the steady-state response.



Natural Frequencies

1.

The natural frequencies of a circuit are the
poles of the network function.

The natural frequencies of a circuit are the
same for any response in the circuit.

To find the natural frequencies of a circuit
you may consider any response of the
circuit. (Choose the simplest one!)



