ECSE 210: Circuit Analysis Lecture \#20:

Three-Phase Circuits
Frequency Response

Power Factor Correction

\rightarrow Line voltage is 40 kV rms at 60 Hz .
\rightarrow Choose capacitors such that $\mathrm{pf}=0.9$ lagging.

Power Factor Correction

\rightarrow The line to neutral voltage is given by:

$$
\left|\mathbf{V}_{\mathrm{an}}\right|=\frac{40 \mathrm{kV}}{\sqrt{3}}=23.09 \mathrm{kV} \mathrm{rms}
$$

\rightarrow The per-phase equivalent circuit is therefore:

$$
\begin{gathered}
\mathbf{S}_{\text {old }}=10 \angle \arccos (0.8) M V A \\
=10 \angle 36.87^{\circ} M V A \\
\downarrow \\
\quad \theta_{V}-\theta_{I}>0
\end{gathered}
$$

For the old pf:
$\mathbf{S}_{\text {old }}=8+6 j M V A$

Power Factor Correction

$$
\begin{aligned}
& \begin{array}{l}
\mathbf{S}_{\text {old }}=10 \angle 36.87^{\circ} M V A=8+6 j M V A \\
\theta_{\text {old }}= \\
=36.87^{\circ} \\
\theta_{\text {new }}= \\
\\
\quad \arccos (0.9)=25.84^{\circ} \\
\quad \text { lagging } \mathrm{pf} \rightarrow \theta_{\text {new }}>0
\end{array} \\
& \mathbf{S}_{\text {new }}=8+j 8 \tan \left(25.84^{\circ}\right)=8+j 3.88 M V A \\
& \mathbf{S}_{\text {new }}=\mathbf{S}_{\text {cap }}+\mathbf{S}_{\text {old }} \quad \quad \mathbf{S}_{\text {cap }}=\mathbf{S}_{\text {new }}-\mathbf{S}_{\text {old }}=-2.12 j M V A \\
& \mathbf{S}_{\text {cap }}=\frac{V_{\text {an }}^{2}}{\mathbf{Z}^{*}}=-j \omega C V_{\text {an }}^{2} \\
& C=\frac{2.12 \times 10^{6}}{377\left(23.09 \times 10^{3}\right)^{2}}=10.6 \mu F
\end{aligned}
$$

Frequency Characteristics

\rightarrow What is $\mathbf{V}_{\mathbf{0}}$ as a function of $\mathbf{V}_{\mathbf{I}}$?

\rightarrow Voltage divider:

$$
\mathbf{V}_{\mathbf{o}}=\frac{\frac{1}{s C}}{R+\frac{1}{s C}} \mathbf{V}_{\mathbf{I}}=\frac{1}{1+s R C} \mathbf{V}_{\mathbf{I}}=\frac{1}{1+j \omega R C} \mathbf{V}_{\mathbf{I}}
$$

Frequency Characteristics

$\mathbf{V}_{\mathbf{o}}=\frac{1}{1+s R C} \mathbf{V}_{\mathbf{I}}$
\rightarrow Input output relation is a function of frequency.
\rightarrow The input and output have the same frequency, but a different magnitude and phase.
(This is a fundamental property of linear circuits.)
\rightarrow We define the transfer function:

$$
\mathbf{H}(s)=\frac{\mathbf{V}_{\mathbf{o}}}{\mathbf{V}_{\mathbf{I}}}=\frac{1}{1+s R C}
$$

Frequency Response

\rightarrow At frequency $\omega:$

$$
\begin{aligned}
& \mathbf{V}_{\mathbf{o}}=\mathbf{H}(j \omega) \mathbf{V}_{\mathbf{I}} \\
& \left|\mathbf{V}_{\mathbf{0}}\right| \angle \theta_{o}=\mathbf{(| \mathbf { H } (j \omega) | \angle \theta _ { h }) (| \mathbf { V } _ { \mathbf { I } } | \angle \theta _ { I })} \\
& \left|\mathbf{V}_{\mathbf{0}}\right| \angle \theta_{o}=\left|\mathbf{H}(j \omega) \| \mathbf{V}_{\mathbf{I}}\right| \angle \theta_{I}+\theta_{h}
\end{aligned}
$$

$$
v_{I}(t)=A \xrightarrow{\cos \left(\omega t+\theta_{I}\right)} \xrightarrow{\mathbf{H}(s)}{ }^{v_{o}(t)=A|\mathbf{H}(j \omega)| \cos \left(\omega t+\theta_{I}+\angle \mathbf{H}(j \omega)\right)}
$$

\rightarrow Same frequency ω.
\rightarrow Amplitude is multiplied by $|\mathrm{H}(\mathrm{j} \omega)|$.
\rightarrow Phase is shifted by the angle of $|\mathrm{H}(\mathrm{j} \omega)|$.
$\rightarrow \mathbf{H}(\mathrm{s})$ is not a phasor!

Network Function

\rightarrow In general:

$\rightarrow x(t)$ may be an input voltage or current.
$\rightarrow \mathrm{y}(\mathrm{t})$ may be a voltage at the "output" node or a branch current.
\rightarrow This leads to four types of network transfer functions.

Network Function

(1) $x(t)=i(t) ; y(t)=v(t) \rightarrow \quad \mathbf{Y}(s)=\mathbf{H}(s) \mathbf{X}(s) ; \mathbf{V}(s)=\mathbf{H}(s) \mathbf{I}(s)$

$$
\mathbf{H}(s)=\mathbf{Z}(s)
$$

Note: in this case $\mathbf{Z}(s)$ is a transfer impedance, not a driving point impedance.
(2) $x(t)=v(t) ; y(t)=i(t) \rightarrow \quad \mathbf{Y}(s)=\mathbf{H}(s) \mathbf{X}(s) ; \mathbf{I}(s)=\mathbf{H}(s) \mathbf{V}(s)$
$\mathbf{H}(s)$ is a transfer admittance.
(3) $x(t)=v_{i}(t) ; y(t)=v_{o}(t) \rightarrow \mathbf{Y}(s)=\mathbf{H}(s) \mathbf{X}(s) ; \mathbf{V}_{o}(s)=\mathbf{H}(s) \mathbf{V}_{I}(s)$

$$
\mathbf{H}(s)=\mathbf{G}_{V}(s)
$$

Note: $\mathbf{G}_{\mathrm{V}}(\mathrm{s})$ is a voltage gain.

Network Function

$$
\text { (4) } x(t)=i_{i}(t) ; y(t)=i_{o}(t) \rightarrow \mathbf{Y}(s)=\mathbf{H}(s) \mathbf{X}(s) ; \quad \mathbf{I}_{o}(s)=\mathbf{H}(s) \mathbf{I}_{I}(s)
$$

$$
\mathbf{H}(s)=\mathbf{G}_{I}(s)
$$

Note: $\mathbf{G}_{\mathrm{I}}(\mathrm{s})$ is a current gain.

Example 1

Find the transfer admittance $\mathbf{I}_{\mathbf{2}}(\mathbf{s}) / \mathbf{V}_{\mathbf{1}}(\mathbf{s})$ and the voltage gain $\mathbf{V}_{\mathbf{2}}(\mathbf{s}) / \mathbf{V}_{\mathbf{1}}(\mathbf{s})$ for the network provided below.

Mesh equations:

$$
\begin{aligned}
& R_{1} \mathbf{I}_{1}(\mathbf{s})+\mathbf{s} L\left(\mathbf{I}_{1}(\mathbf{s})-\mathbf{I}_{2}(\mathbf{s})\right)=\mathbf{V}_{\mathbf{1}}(\mathbf{s}) \\
& \mathbf{s} L\left(\mathbf{I}_{\mathbf{2}}(\mathbf{s})-\mathbf{I}_{\mathbf{1}}(\mathbf{s})\right)+\frac{\mathbf{I}_{\mathbf{2}}(\mathbf{s})}{\mathbf{s} C}+R_{2} \mathbf{I}_{\mathbf{2}}(\mathbf{s})=0
\end{aligned}
$$

Example 1

$$
\begin{align*}
& \left(R_{1}+\mathbf{s} L\right) \mathbf{I}_{1}(\mathbf{s})-\mathbf{s} L \mathbf{I}_{\mathbf{2}}(\mathbf{s})=\mathbf{V}_{\mathbf{1}}(\mathbf{s}) \\
& -\mathbf{s} L \mathbf{I}_{\mathbf{1}}(\mathbf{s})+\left(R_{2}+\mathbf{s} L+\frac{1}{\mathbf{s} C}\right) \mathbf{I}_{\mathbf{2}}(\mathbf{s})=0 \tag{0}
\end{align*}
$$

\rightarrow Solve for \mathbf{I}_{2} :

$$
\text { (1) } \rightarrow \quad \mathbf{I}_{1}(\mathbf{s})=\frac{1}{\mathbf{s} L}\left(R_{2}+\mathbf{s} L+\frac{1}{\mathbf{s} C}\right) \mathbf{I}_{\mathbf{2}}(\mathbf{s})
$$

Substituting into it \rightarrow

$$
\frac{\left(R_{1}+\mathbf{s} L\right)}{\mathbf{s} L}\left(R_{2}+\mathbf{s} L+\frac{1}{\mathbf{s} C}\right) \mathbf{I}_{\mathbf{2}}(\mathbf{s})-\mathbf{s} L \mathbf{I}_{\mathbf{2}}(\mathbf{s})=\mathbf{V}_{\mathbf{1}}(\mathbf{s})
$$

Example 1

$$
\begin{gathered}
\frac{\left(R_{1}+\mathbf{s} L\right)}{\mathbf{s} L}\left(R_{2}+\mathbf{s} L+\frac{1}{\mathbf{s} C}\right) \mathbf{I}_{\mathbf{2}}(\mathbf{s})-\mathbf{s} L \mathbf{I}_{2}(\mathbf{s})=\mathbf{V}_{\mathbf{1}}(\mathbf{s}) \\
\mathbf{I}_{2}(\mathbf{s})=\frac{\mathbf{s} L \mathbf{V}_{1}(\mathbf{s})}{\left(R_{1}+\mathbf{s} L\right)\left(R_{2}+\mathbf{s} L+\frac{1}{\mathbf{s} C}\right)-\mathbf{s}^{2} L^{2}} \\
\mathbf{I}_{\mathbf{2}}(\mathbf{s})=\frac{L C \mathbf{s}^{2} \mathbf{V}_{\mathbf{1}}(\mathbf{s})}{\left(R_{1}+R_{2}\right) L C \mathbf{s}^{2}+\left(L+R_{1} R_{2} C\right) \mathbf{s}+R_{1}} \\
\mathbf{V}_{\mathbf{2}}(\mathbf{s})=\frac{\rightarrow R_{2} L C \mathbf{s}^{2} \mathbf{V}_{1}(\mathbf{s})}{\left(R_{1}+R_{2}\right) L C \mathbf{s}^{2}+\left(L+R_{1} R_{2} C\right) \mathbf{s}+R_{1}}
\end{gathered}
$$

Example 1

\rightarrow Transfer admittance:

$$
\mathbf{Y}(\mathbf{s})=\frac{\mathbf{I}_{\mathbf{2}}(\mathbf{s})}{\mathbf{V}_{\mathbf{1}}(\mathbf{s})}=\frac{L C \mathbf{s}^{2}}{\left(R_{1}+R_{2}\right) L C \mathbf{s}^{2}+\left(L+R_{1} R_{2} C\right) \mathbf{s}+R_{1}}
$$

\rightarrow Voltage gain:

$$
\mathbf{G}_{v}(\mathbf{s})=\frac{\mathbf{V}_{\mathbf{2}}(\mathbf{s})}{\mathbf{V}_{\mathbf{1}}(\mathbf{s})}=\frac{R_{2} L C \mathbf{s}^{2}}{\left(R_{1}+R_{2}\right) L C \mathbf{s}^{2}+\left(L+R_{1} R_{2} C\right) \mathbf{s}+R_{1}}
$$

Example 2: Integrator

KCL in time domain

$$
\begin{aligned}
& \frac{v_{I}(t)}{R}+C \frac{d v_{o}(t)}{d t}=0 \quad \rightarrow \quad \frac{d v_{o}(t)}{d t}=-\frac{1}{R C} v_{I}(t) \\
& v_{o}(t)=-\frac{1}{R C} \int_{0+}^{t} v_{I}(t) d t+v_{o}(0+)=-\frac{1}{R C} \int_{0+}^{t} v_{I}(t) d t
\end{aligned}
$$

Assuming zero initial conditions.

Example 2: Integrator

KCL in frequency domain

$$
\frac{\mathbf{V}_{\mathbf{I}}(\mathbf{s})}{R}+\mathbf{s} C \mathbf{V}_{\mathbf{0}}(\mathbf{s})=0 \quad \rightarrow \quad \mathbf{V}_{\mathbf{0}}(\mathbf{s})=-\frac{1}{\mathbf{s} R C} \mathbf{V}_{\mathbf{I}}(\mathbf{s})
$$

\rightarrow Division by \mathbf{s} is equivalent to integration
(Assuming zero initial conditions)

Example 3: Differentiator

KCL in time domain

$$
\frac{v_{I}(t)}{R}+\frac{1}{L} \int_{0_{+}}^{t} v_{o}(t) d t+i_{L}(0+)=0 \quad \rightarrow \quad \int_{0_{+}}^{t} v_{o}(t) d t=-\frac{L}{R} v_{I}(t) \quad \begin{aligned}
& \text { Assuming zero } \\
& \text { initial condition. }
\end{aligned}
$$

$$
v_{o}(t)=-\frac{L}{R} \frac{d v_{I}(t)}{d t}
$$

Example 3: Differentiator

KCL in frequency domain

$$
\frac{\mathbf{V}_{\mathbf{I}}(\mathbf{s})}{R}+\frac{\mathbf{V}_{\mathbf{0}}(\mathbf{s})}{\mathbf{s} L}=0 \quad \rightarrow \quad \mathbf{V}_{\mathbf{0}}(\mathbf{s})=-\frac{\mathbf{s} L}{R} \mathbf{V}_{\mathbf{I}}(\mathbf{s})
$$

\rightarrow Multiplication by \mathbf{s} is equivalent to differentiation
(Assuming zero initial conditions)

