ECSE 210: Circuit Analysis
 Lecture\#19:

Three-Phase Circuits

Wye-Delta Transformation - Review

Wye-Delta for Balanced Loads

Balanced Wye-to-Wye Connection

Balanced Wye-to-Wye Connection

Phase voltages: $\quad \mathbf{V}_{\mathbf{a}}=V_{p} \angle 0^{\circ}$

$$
\begin{aligned}
& \mathbf{V}_{\mathbf{b}}=V_{p} \angle-120^{\circ} \\
& \mathbf{V}_{\mathbf{c}}=V_{p} \angle+120^{\circ}
\end{aligned}
$$

Line-to-line voltages (or line voltages):

$$
\begin{aligned}
& \mathbf{V}_{\mathbf{a b}}=\mathbf{V}_{\mathbf{L}}=\sqrt{3} V_{p} \angle 30^{\circ} \quad \mathbf{L} \equiv \text { line } \\
& \mathbf{V}_{\mathbf{b c}}=\sqrt{3} V_{p} \angle-90^{\circ} \\
& \mathbf{V}_{\mathbf{c a}}=\sqrt{3} V_{p} \angle-210^{\circ}=\sqrt{3} V_{p} \angle+150^{\circ}
\end{aligned}
$$

Balanced Wye-to-Wye Connection

Currents:

$$
\begin{array}{ll}
\mathbf{I}_{\mathbf{L}}=\mathbf{I}_{\mathbf{P}} & \text { (Line current = Phase current) } \\
\mathbf{I}_{\mathrm{aA}}=\frac{\mathbf{V}_{\mathbf{a}}}{\mathbf{Z}_{Y}}=\frac{V_{p} \angle 0}{\left|\mathbf{Z}_{Y}\right| \angle \phi}=\left|\mathbf{I}_{\mathbf{L}}\right| \angle-\phi=I_{p} \angle-\phi & \\
\mathbf{I}_{\mathrm{bB}}=\left|\mathbf{I}_{\mathbf{L}}\right| \angle(-\phi-120)=I_{p} \angle(-\phi-120) & \begin{array}{l}
\text { Phase voltage at the } \\
\text { source is across the }
\end{array} \\
\mathbf{I}_{\mathrm{cC}}=\left|\mathbf{I}_{\mathbf{L}}\right| \angle(-\phi-240)=I_{p} \angle(-\phi-240) &
\end{array}
$$

Balanced Wye-to-Delta Connection

c
Phase voltages: $\mathbf{V}_{\mathrm{AB}}=V_{A B} \angle 0^{\circ}=V_{p} \angle 0^{\circ}$
Line-to-line voltages (line voltages)

At the Δ
load impedance.

Balanced Wye-to-Delta Connection

Note

Phase voltages: $\mathbf{V}_{\mathrm{AB}}=V_{A B} \angle 0^{\circ}=V_{p} \angle 0^{\circ}$
At the Δ

$$
\begin{aligned}
& \mathbf{V}_{\mathrm{BC}}=V_{p} \angle-120^{\circ} \\
& \mathbf{V}_{\mathrm{CA}}=V_{p} \angle-240^{\circ}
\end{aligned}
$$

load impedance.

Line-to-line voltages (line voltages):

$$
\mathbf{V}_{\mathrm{AB}}=\mathbf{V}_{\mathbf{L}} \quad(\text { Line voltage }=\text { Phase voltage })
$$

Phase Currents:

$$
\begin{aligned}
& \mathbf{I}_{\mathrm{AB}}=\frac{\mathbf{V}_{\mathrm{AB}}}{\mathbf{Z}_{\Delta}}=I_{p} \angle-\phi \\
& \mathbf{I}_{\mathrm{BC}}=\frac{\mathbf{V}_{\mathrm{BC}}}{\mathbf{Z}_{\Delta}}=I_{p} \angle-120-\phi \\
& \mathbf{I}_{\mathrm{CA}}=\frac{\mathbf{V}_{\mathrm{CA}}}{\mathbf{Z}_{\Delta}}=I_{p} \angle-240-\phi
\end{aligned}
$$

$Z_{\Delta}=Z_{\Delta} \angle \phi$

Note

Balanced Wye-to-Delta Connection

Line Currents:

$$
\begin{aligned}
& \mathbf{I}_{\mathrm{aA}}=\sqrt{3} I_{p} \angle-\phi-30^{\circ} \\
& \mathbf{I}_{\mathrm{bB}}=\sqrt{3} I_{p} \angle-\phi-150^{\circ} \\
& \mathbf{I}_{\mathrm{cC}}=\sqrt{3} I_{p} \angle-\phi+90^{\circ}
\end{aligned}
$$

Example 1

Assume that an abc-sequence three-phase voltage source connected as a wye supplies power to a balanced deltaconnected load. Given the load current $\mathbf{I}_{\mathbf{A B}}$, find the line currents.

$$
\mathbf{I}_{\mathbf{A B}}=4 \angle 20^{\circ} \mathrm{Arms}
$$

$$
\begin{aligned}
& \mathbf{I}_{\mathrm{aA}}=4 \sqrt{3} \angle-10^{0} \mathrm{Arms} \\
& \mathbf{I}_{\mathrm{bB}}=4 \sqrt{3} \angle-130^{\circ} \mathrm{Arms} \\
& \mathbf{I}_{\mathbf{c C}}=4 \sqrt{3} \angle+110^{\circ} \mathrm{Arms}
\end{aligned}
$$

Line currents

Example 2

Assume a 60 Hz abc-sequence three-phase voltage source connected in a balanced wye supplies power to a balanced deltaconnected load. If $\mathbf{V}_{\text {an }}=120 \angle 30^{\circ} \mathrm{V} \mathrm{rms}$ and the load contains a 10Ω resistance in series with a 20 mH inductance in all three phases, what are the line and phase currents?

The load impedance per phase is:

$$
\mathbf{Z}_{\Delta}=10+j(2 \pi 60)(20 m H)=10+j 7.54 \Omega
$$

Since there is no line impedance:

$$
\begin{aligned}
& \mathbf{V}_{\mathrm{AB}}=\mathbf{V}_{\mathrm{ab}}=120 \sqrt{3} \angle 60^{\circ} V r m s \\
& \mathbf{I}_{\mathrm{AB}}=\frac{120 \sqrt{3} \angle 60^{\circ}}{10+j 7.54}=16.6 \angle 22.98^{\circ} \mathrm{Arms}
\end{aligned}
$$

Example 2

$$
\begin{array}{ll}
\mathbf{I}_{\mathrm{AB}}=\frac{120 \sqrt{3} \angle 60^{\circ}}{10+j 7.54}=16.6 \angle 22.98^{\circ} \mathrm{Arms} & \begin{array}{l}
\text { Load (phase) } \\
\text { current }
\end{array} \\
\mathbf{I}_{\mathrm{aA}}=16.6 \sqrt{3} \angle-7.02^{\circ} \mathrm{Arms} & \text { Line current }
\end{array}
$$

Using the abc-sequence, the remaining phase and line currents are:

$$
\mathbf{I}_{\mathbf{B C}}=16.6 \angle-97.02^{\circ} \mathrm{Arms} \quad \mathbf{I}_{\mathrm{CA}}=16.6 \angle 142.98^{\circ} \mathrm{Arms}
$$

$$
\mathbf{I}_{\mathrm{bB}}=16.6 \sqrt{3} \angle-127.02^{\circ} \mathrm{Arms}
$$

Phase currents

$$
\mathbf{I}_{\mathrm{cC}}=16.6 \sqrt{3} \angle 112.98^{\circ} \mathrm{Arms}
$$

Line currents

Three-Phase Power

$$
\begin{aligned}
& P_{p}=\left|\mathbf{V}_{\mathbf{a n}} \| \mathbf{I}_{\mathbf{L}}\right| \overbrace{\cos (\theta)} \rightarrow \text { Power factor } \\
& Q_{p}=\left|\mathbf{V}_{\mathbf{a n}} \| \mathbf{I}_{\mathbf{L}}\right| \sin (\theta) \rightarrow \text { Reactive power power }
\end{aligned}
$$

Example 3

Assume a balanced three-phase wye-delta system has a line voltage of 208 V rms. If the total real power (avg. power) absorbed by the load is 1200 W , and the load power factor angle is 20° lagging, determine the magnitude of the line current and the value of the load impedance per phase in the delta.

Solution

Amplitude of line-to neutral-voltage: $\left|\mathbf{V}_{\text {an }}\right|=\frac{208}{\sqrt{3}} \mathrm{Vrms}$
Per phase power $=400 \mathrm{~W}=\frac{208\left|\mathbf{I}_{\mathbf{L}}\right|}{\sqrt{3}} \cos \left(20^{\circ}\right)$
$\left|\mathbf{I}_{\mathbf{L}}\right|=3.5 \mathrm{Arms} \quad$ Line current

Example 3

$$
\left|\mathbf{I}_{\mathbf{L}}\right|=3.5 \mathrm{Arms}
$$

For a delta-connected load \rightarrow The phase current is:

$$
\left|\mathbf{I}_{\mathrm{V}}\right|=\frac{\left|\mathbf{I}_{\mathrm{L}}\right|}{\sqrt{3}}=2.04 \mathrm{Arms}
$$

The magnitude of the impedance in each phase is:

$$
\left|\mathbf{Z}_{\Delta}\right|=\frac{\left|\mathbf{V}_{\mathbf{L}}\right|}{\left|\mathbf{I}_{\Delta}\right|}=\frac{208}{2.04}=101.77 \Omega
$$

Since the power factor angle is 20° lagging (means current is lagging):

$$
\mathbf{Z}_{\Delta}=101.77 \angle 20^{\circ} \Omega
$$

Example 4

Consider a balanced three-phase circuit consisting of:
\rightarrow A wye-connected abc-sequence voltage source with $\mathbf{V}_{\mathrm{ab}}=208 \angle 30^{\circ} \mathrm{V}$ rms;
\rightarrow A wye-connected load, with per phase impedance $10+6 j \Omega$, in parallel with a delta-connected load with per phase impedance $24+9 j \Omega$;
\rightarrow A line impedance with per phase impedance $1+0.5 \mathrm{j} \Omega$.

Determine the line currents and the load phase voltages when the load is converted into an equivalent wye.

Example 4

Example 4

Delta to wye transformation:

$$
\mathbf{Z}_{\Delta Y}=\frac{\mathbf{Z}_{\Delta}}{3}=8+3 j \Omega
$$

Example 4

Per-phase equivalent circuit:

Example 4

Line-voltage at the source is $\mathbf{V}_{\mathbf{a b}}=208 \angle 30^{\circ} \mathrm{V} \mathrm{rms}$

Given

\rightarrow The source phase voltage is:

$$
\mathbf{V}_{\mathrm{an}}=\frac{208}{\sqrt{3}} \angle 0^{\circ} V r m s=120 \angle 0^{\circ} V r m s
$$

\rightarrow The line current is: $\mathbf{I}_{\mathrm{aA}}=\frac{\mathbf{V}_{\mathrm{an}}}{\mathbf{Z}_{\text {total }}}$
where

$$
\begin{aligned}
& \mathbf{Z}_{\text {total }}=\mathbf{Z}_{l}+\mathbf{Z}_{Y} \| \mathbf{Z}_{\Delta Y}=5.49+2.59 j \Omega \\
\rightarrow & \mathbf{I}_{\mathbf{a A}}=19.77 \angle-25.26^{\circ} \mathrm{Arms}
\end{aligned}
$$

\rightarrow The phase voltage at the load is: $\mathbf{V}_{\mathbf{A N}}=\mathbf{I}_{\mathrm{aA}} \mathbf{Z}_{\text {load }}$
where

$$
\begin{aligned}
& \mathbf{Z}_{\text {load }}=\mathbf{Z}_{Y} \| \mathbf{Z}_{\Delta Y}=4.49+2.09 j \Omega \\
& \mathbf{V}_{\mathbf{A N}}=97.86 \angle-0.31 \mathrm{Vrms}
\end{aligned}
$$

Example 4

Therefore, the balanced three-phase line currents and load phase voltages are given by:

$$
\begin{aligned}
& \mathbf{I}_{\mathrm{aA}}=19.77 \angle-25.26^{\circ} \mathrm{Arms} \\
& \mathbf{I}_{\mathrm{bB}}=19.77 \angle-145.26^{\circ} \mathrm{Arms} \\
& \mathbf{I}_{\mathbf{c C}}=19.77 \angle 94.74^{\circ} \mathrm{Arms}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{V}_{\mathbf{A N}}=97.86 \angle-0.31^{\circ} \mathrm{Vrms} \\
& \mathbf{V}_{\mathbf{B N}}=97.86 \angle-120.31^{\circ} \mathrm{Vrms} \\
& \mathbf{V}_{\mathbf{B N}}=97.86 \angle 119.69^{\circ} \mathrm{Vrms}
\end{aligned}
$$

Example 5

Consider the balanced circuit below:

Determine which is the load and which is the source.

Given:

$$
\begin{aligned}
& \mathbf{V}_{\mathbf{a b}}=12 \angle 0^{\circ} k V r m s \quad \mathbf{V}_{\mathbf{A B}}=12 \angle 5^{\circ} \mathrm{kVrms} \\
& \mathbf{Z}_{\text {line }}=1+2 j \Omega
\end{aligned}
$$

Example 5

The per-phase equivalent circuit is:

$$
\mathbf{V}_{\mathrm{an}}=\frac{12}{\sqrt{3}} \angle-30^{\circ} \mathrm{kVrms} \quad \mathbf{V}_{\mathrm{AN}}=\frac{12}{\sqrt{3}} \angle-25^{\circ} \mathrm{kVrms}
$$

The line current is given by:

$$
\mathbf{I}_{\mathbf{a}}=\frac{\mathbf{V}_{\mathbf{a n}}-\mathbf{V}_{\mathbf{A N}}}{\mathbf{Z}_{\text {line }}}=270.3 \angle-180.93^{\circ} \mathrm{Arms}
$$

Example 5

\rightarrow The per-phase power supplied to system \mathbf{Y} is:

$$
P_{Y_{p}}=\left|\mathbf{V}_{\mathbf{A N}} \| \mathbf{I}_{\mathbf{a} \mathbf{A}}\right| \cos (-25+180.93)=-1.71 \mathrm{MW}
$$

The total power supplied to system \mathbf{Y} is:

$$
P_{Y}=3 P_{Y_{p}}=-5.13 \mathrm{MW}
$$

Thus system Y is not the load, it supplies 5.13MW.
\rightarrow The per-phase power supplied to system \mathbf{X} is:

$$
P_{X p}=-\left|\mathbf{V}_{\mathrm{an}} \| \mathbf{I}_{\mathbf{a} \mathbf{A}}\right| \cos (-30+180.93)=1.64 \mathrm{MW}
$$

The total power supplied to system \mathbf{X} is:

$$
P_{Y}=3 P_{Y_{p}}=4.91 \mathrm{MW}
$$

\rightarrow Is power being conserved?

