ECSE 210: Circuit Analysis Lecture \#18:

Three-Phase Circuits

Balanced Load Connections

Wye-Connected Load

n
The above is also called the Wye-Wye configuration (Wye-connected source, Wye connected load). \rightarrow For balanced circuit, current in neutral is zero.

Definitions

1. The Phase Voltage is the voltage that appears across the load.
2. The Line Voltage is the voltage difference from line to line.
3. The Line Current is the current through the transmission line.
4. The Phase Current is the current through the load.

Balanced Load Connections

Delta-Connected Load

Note: Delta-connected load has no neutral line.

Balanced Load Connections (Y-Y)

The phase voltages are:

$$
\begin{aligned}
& \mathbf{V}_{\text {an }}=V_{p} \angle 0^{\circ} \\
& \mathbf{V}_{\text {bn }}=V_{p} \angle-120^{\circ} \\
& \mathbf{V}_{\text {cn }}=V_{p} \angle+120^{\circ}
\end{aligned}
$$

The line voltages are:

$\mathbf{V}_{\mathrm{ab}}=\mathbf{V}_{\mathrm{an}}-\mathbf{V}_{\mathrm{bn}}=\sqrt{3} V_{p} \angle 30^{\circ}$

$$
\mathbf{V}_{\mathbf{b c}}=\mathbf{V}_{\mathrm{bn}}-\mathbf{V}_{\mathrm{cn}}=\sqrt{3} V_{p} \angle-90^{\circ}
$$

$$
\mathbf{V}_{c a}=\mathbf{V}_{\mathrm{cn}}-\mathbf{V}_{\mathrm{an}}=\sqrt{3} V_{p} \angle-210^{\circ}=\sqrt{3} V_{p} \angle+150^{\circ}
$$

Positive Phase Sequence

By Convention

Positive Phase Sequence (abc)

$$
\begin{aligned}
& \mathbf{V}_{\mathbf{a n}}=V_{p} \angle 0^{\circ} \\
& \mathbf{V}_{\mathbf{b n}}=V_{p} \angle-120^{\circ} \\
& \mathbf{V}_{\mathbf{c n}}=V_{p} \angle+120^{\circ}
\end{aligned}
$$

Negative Phase Sequence (acb)

$$
\begin{aligned}
& \mathbf{V}_{\mathbf{a n}}=V_{p} \angle 0^{\circ} \\
& \mathbf{V}_{\mathbf{b n}}=V_{p} \angle+120^{\circ} \\
& \mathbf{V}_{\mathbf{c n}}=V_{p} \angle-120^{\circ}
\end{aligned}
$$

Phase and Line Voltages of Wye Load

Balanced Currents

Line currents

$\mathbf{I}_{\mathbf{a}}=\frac{\mathbf{V}_{\mathrm{an}}}{\mathbf{Z}_{Y}}=\frac{V_{p} \angle 0}{\left|\mathbf{Z}_{Y}\right| \angle \phi}=\left|\mathbf{I}_{\mathbf{L}}\right| \angle-\phi$
$\mathbf{I}_{\mathbf{b}}=\frac{\mathbf{V}_{\mathrm{bn}}}{\mathbf{Z}_{Y}}=\frac{V_{p} \angle-120}{\left|\mathbf{Z}_{Y}\right| \angle \phi}=\left|\mathbf{I}_{\mathbf{L}}\right| \angle(-\phi-120)$
$\mathbf{I}_{\mathbf{c}}=\frac{\mathbf{V}_{\mathrm{cn}}}{\mathbf{Z}_{Y}}=\frac{V_{p} \angle+120}{\left|\mathbf{Z}_{Y}\right| \angle \phi}=\left|\mathbf{I}_{\mathbf{L}}\right| \angle(-\phi+120)$
\rightarrow Same amplitude
\rightarrow Phases are 120 degrees apart
\rightarrow Current in neutral is zero
\rightarrow The neutral line can be removed from the circuit

Phase Voltages \& Line Currents of Wye Load

Wye-Wye Connection with Line Impedance

Balanced case: $\left|\mathbf{V}_{\mathrm{an}}\right|=\left|\mathbf{V}_{\mathrm{bn}}\right|=\left|\mathbf{V}_{\mathrm{cn}}\right|$

$$
\begin{aligned}
& \angle \mathbf{V}_{\mathbf{a n}}=\theta_{a} ; \quad \angle \mathbf{V}_{\mathbf{b n}}=\theta_{a}-120 ; \quad \angle \mathbf{V}_{\mathbf{c n}}=\theta_{a}-240 \\
& \mathbf{Z}_{l a}=\mathbf{Z}_{l b}=\mathbf{Z}_{l c} \quad \mathbf{Z}_{L a}=\mathbf{Z}_{L b}=\mathbf{Z}_{L c}
\end{aligned}
$$

Example 1

Assume that an abc-sequence three-phase voltage source connected in a balanced wye has a line voltage:

$$
\mathbf{V}_{\mathrm{ab}}=208 \angle-30^{\circ} V \mathrm{rms}
$$

Find the three phase voltages:

$$
\left|\mathbf{V}_{\mathrm{an}}\right|=\left|\mathbf{V}_{\mathbf{b n}}\right|=\left|\mathbf{V}_{\mathbf{c n}}\right|=V_{p}=\frac{\left|\mathbf{V}_{\mathrm{ab}}\right|}{\sqrt{3}}=\frac{208}{\sqrt{3}}=120 \mathrm{Vrms}
$$

Recall graphical phase relation between phase and line voltages:

$$
\begin{aligned}
& \mathbf{V}_{\text {an }}=120 \angle-60^{\circ} V r m s \\
& \mathbf{V}_{\text {bn }}=120 \angle-180^{\circ} V r m s \\
& \mathbf{V}_{\text {cn }}=120 \angle 60^{\circ} V \mathrm{rms}
\end{aligned}
$$

Example 2

Assume a wye-connected load is supplied by an abc-sequence balanced three-phase wye-connected source with a phase voltage of 120 V rms. Given the line impedance and load impedance per phase are $1+j \Omega$ and $20+10 j \Omega$, respectively, determine the line current and load voltages.

Balanced circuit \rightarrow Analyze one phase only!

Phase voltages:

$$
\begin{aligned}
& \mathbf{V}_{\mathrm{an}}=120 \angle 0 V \mathrm{rms} \\
& \mathbf{V}_{\mathrm{bn}}=120 \angle-120^{\circ} V \mathrm{rms} \\
& \mathbf{V}_{\mathrm{cn}}=120 \angle+120^{\circ} V \mathrm{rms}
\end{aligned}
$$

Example 2

Balanced circuit \rightarrow Analyze one phase only!

Phase voltages:

$$
\begin{aligned}
& \mathbf{V}_{\mathrm{an}}=120 \angle 0 V \mathrm{rms} \\
& \mathbf{V}_{\text {bn }}=120 \angle-120^{\circ} V \mathrm{rms} \\
& \mathbf{V}_{\text {cn }}=120 \angle+120^{\circ} V \mathrm{rms}
\end{aligned}
$$

Line current (phase a): $\mathbf{I}_{\mathrm{aA}}=\frac{120 \angle 0}{21+j 11}=5.06 \angle-27.65^{\circ} A \mathrm{rms}$
Load voltage (phase a): $\mathbf{V}_{\mathbf{A N}}=\left(5.06 \angle-27.65^{\circ}\right)(20+j 10)$

$$
=113.15 \angle-1.08^{\circ} V \quad \mathrm{rms}
$$

Example 2

Using the $a b c$-sequence we can find phases b and c :
Line Currents:

$$
\begin{aligned}
& \mathbf{I}_{\mathrm{bB}}=5.06 \angle-147.65^{\circ} \mathrm{Arms} \\
& \mathbf{I}_{\mathbf{c C}}=5.06 \angle-267.65^{\circ}=5.06 \angle 92.35^{\circ} \mathrm{Arms}
\end{aligned}
$$

Load Voltages

$$
\begin{aligned}
& \mathbf{V}_{\mathbf{B}}=113.15 \angle-121.08^{\circ} V \mathrm{rms} \\
& \mathbf{V}_{\mathbf{C}}=113.15 \angle-241.08^{\circ}=113.15 \angle 118.92^{\circ} V \mathrm{rms}
\end{aligned}
$$

Note: For the wye-wye connection, line currents and phase currents are the same.

Balanced Wye-Delta Connection

Note: In this case, line voltages and phase voltages are the same!

For an abc-connected source, the line-to-neutral voltages are:

$$
\begin{aligned}
& \mathbf{V}_{\mathbf{a n}}=V_{p} \angle 0 V r m s \\
& \mathbf{V}_{\mathbf{b n}}=V_{p} \angle-120^{\circ} V \mathrm{rms} \\
& \mathbf{V}_{\mathbf{c n}}=V_{p} \angle+120^{\circ} V \mathrm{rms}
\end{aligned}
$$

Balanced Wye-Delta Connection

The phase or line voltages (across the load) are given by:

$$
\begin{aligned}
& \mathbf{V}_{\mathbf{a b}}=\sqrt{3} V_{p} \angle 30 V r m s \\
& \mathbf{V}_{\mathbf{b c}}=\sqrt{3} V_{p} \angle-90 V r m s \\
& \mathbf{V}_{\mathbf{c a}}=\sqrt{3} V_{p} \angle-210=\sqrt{3} V_{p} \angle 150 V \mathrm{rms}
\end{aligned}
$$

For a load $\mathbf{Z}_{\Delta}=\left|\mathbf{Z}_{\Delta}\right| \angle \phi \quad$ The phase currents at the load are:

$$
\begin{aligned}
& \mathbf{I}_{\mathbf{A B}}=\frac{\mathbf{V}_{\mathbf{A B}}}{\mathbf{Z}_{\Delta}}=I_{\Delta} \angle 30-\phi \\
& \mathbf{I}_{\mathbf{B C}}=\frac{\mathbf{V}_{\mathbf{B C}}}{\mathbf{Z}_{\Delta}}=I_{\Delta} \angle-90-\phi \\
& \mathbf{I}_{\mathrm{CA}}=\frac{\mathbf{V}_{\mathrm{CA}}}{\mathbf{Z}_{\Delta}}=I_{\Delta} \angle 150-\phi
\end{aligned}
$$

Balanced Wye-Delta Connection

The line currents can be found from the phase currents using KCL:

$$
\begin{aligned}
& \quad \mathbf{I}_{\mathrm{aA}}=\mathbf{I}_{\mathrm{AB}}-\mathbf{I}_{\mathrm{CA}} \\
& \mathbf{I}_{\mathrm{aA}}=\sqrt{3} I_{\Delta} \angle-\phi \\
& \mathbf{I}_{\mathrm{bB}}=\sqrt{3} I_{\Delta} \angle-120-\phi \\
& \mathbf{I}_{\mathrm{cC}}=\sqrt{3} I_{\Delta} \angle-240-\phi
\end{aligned}
$$

