ECSE 210: Circuit Analysis Lecture \#15:

Steady State Power Analysis

AC Steady-State Power

Recall:

$$
\begin{aligned}
& V_{r m s} \angle \theta_{V}=\left(I_{r m s} \angle \theta_{I}\right)\left(Z \angle \theta_{Z}\right)=I_{r m s} Z \angle\left(\theta_{I}+\theta_{Z}\right) \\
& \theta_{Z}=\theta_{V}-\theta_{I} \\
& P_{\text {avg }}=I_{r m S} V_{r m s} \cos \left(\theta_{V}-\theta_{I}\right) \\
& P_{\text {avg }}=I_{r m s} V_{r m s} \cos \left(\theta_{Z}\right) \\
& P_{\text {avg }}=I_{r m s}^{2} Z \cos \left(\theta_{Z}\right) \quad P_{\text {avg }}=\frac{V_{r m s} \angle \theta_{V} \mathrm{~V}}{Z} \underbrace{V_{r m s}^{2}} \underbrace{\cos \left(\theta_{Z}\right)}_{\text {power factor }}
\end{aligned}
$$

$$
\text { power factor }=\cos \left(\theta_{Z}\right)=\cos \left(\theta_{V}-\theta_{I}\right)
$$

Complex Power

$$
\begin{aligned}
& \mathbf{V}_{\mathrm{rms}}=V_{r m s} \angle \theta_{V} \quad \mathbf{Z}=Z \angle \theta_{Z} \\
& \mathbf{I}_{\mathrm{rms}}=I_{r m s} \angle \theta_{I} \\
& \mathbf{I}_{\mathrm{rms}}^{*}=I_{r m s} \angle-\theta_{I}
\end{aligned}
$$

Define complex power as:

$$
\mathbf{S}=\mathbf{V}_{\mathrm{rms}} \mathbf{I}_{\mathrm{rms}}^{*}
$$

$$
\mathbf{S}=\mathbf{V}_{\mathbf{r m s}} \mathbf{I}_{\mathbf{r m s}}^{*}=V_{r m s} I_{r m s} \angle\left(\theta_{v}-\theta_{I}\right)=V_{r m s} I_{r m s} e^{j\left(\theta_{v}-\theta_{I}\right)}
$$

$$
=\underbrace{V_{r m s} I_{r m s} \cos \left(\theta_{v}-\theta_{I}\right)}_{P_{a v g}}+j V_{r m s} I_{r m s} \sin \left(\theta_{v}-\theta_{I}\right)
$$

AC Steady-State Power

Complex power:

$$
\begin{aligned}
& \mathbf{S}=\mathbf{V}_{\mathrm{rms}} \mathbf{I}_{\mathrm{rms}}^{*} \longmapsto P_{a v g}=\operatorname{Re}[\mathbf{S}] \\
& \mathbf{V}_{\mathrm{rms}}=\mathbf{Z} \mathbf{I}_{\mathrm{rms}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{S}=\mathbf{Z} \mathbf{I}_{\mathrm{rms}} \mathbf{I}_{\mathrm{rms}}^{*}=\mathbf{Z}\left|\mathbf{I}_{\mathrm{rms}}\right|^{2}=\mathbf{Z} I_{r m s}^{2} \\
& P_{a v g}=\operatorname{Re}[\mathbf{S}]=\operatorname{Re}[\mathbf{Z}] I_{r m s}^{2}=I_{r m s}^{2} Z \cos \left(\theta_{z}\right)
\end{aligned}
$$

Nomenclature/Conventions

$$
\begin{aligned}
& \mathbf{S}=\mathbf{V}_{\mathrm{rms}} \mathbf{I}_{\mathrm{rms}}^{*}=V_{r m s} I_{r m s} \angle\left(\theta_{V}-\theta_{I}\right) \\
& \theta_{V}-\theta_{I}=\theta_{Z} \\
& \mathbf{S}=P+j Q
\end{aligned}
$$

$\rightarrow \mathbf{S}$ is a complex number.
\rightarrow The magnitude of \mathbf{S} is the apparent power. (Units: volt-ampere VA or kVA)
\rightarrow The angle of S is the power factor angle.
\rightarrow The real part of S is the average power. (Units: watts)
\rightarrow The imaginary part of S is the reactive power. (Units: volt-ampere reactive (VAR))

Example

$$
\begin{aligned}
& \mathbf{V}_{r m s}=\frac{10}{\sqrt{2}} \angle 0^{\circ}=7.07 \angle 0^{\circ} \mathrm{V} \\
& \mathbf{Z}=50+j 10^{4}\left(12 \times 10^{-3}\right)=50+j 120 \Omega \\
& \mathbf{I}_{r m s}=\frac{\mathbf{V}_{r m s}}{\mathbf{Z}} \\
& \mathbf{I}_{r m s}=\frac{7.07 \angle 0^{\circ}}{130 \angle 67.38^{\circ}}=54.4 \angle-67.38^{\circ} \mathrm{mA} \\
& \mathbf{S}=\mathbf{V}_{r m s} \mathbf{I}_{r m s}^{*}=\left(7.07 \angle 0^{\circ} V\right)\left(54.4 \angle 67.38^{\circ} \mathrm{mA}\right)=0.385 \angle 67.38^{\circ} \quad \mathrm{VA} \\
& \mathbf{S}=\mathbf{V}_{r m s} \mathbf{I}_{r m s}^{*}=0.385 \cos \left(67.38^{\circ}\right)+j 0.385 \sin \left(67.38^{\circ}\right)=0.15+0.36 j
\end{aligned}
$$

Example

$$
\mathbf{S}=\mathbf{V}_{\mathrm{rms}} \mathbf{I}_{\mathrm{rms}}^{*}=0.385 \angle 67.38^{\circ}=0.15+0.36 j
$$

Apparent power
Average power
Reactive power
Power factor angle $=67.38^{\circ}$

$$
\begin{aligned}
& \mathrm{S}=0.385 \mathrm{VA} \\
& \mathrm{P}=0.15 \mathrm{~W} \\
& \mathrm{Q}=0.36 \mathrm{VAR} \\
& =67.38^{\circ}
\end{aligned}
$$

Apparent
Power S

Power Factor

$$
\begin{aligned}
& P_{\text {avg }}=I_{r m s} V_{r m s} \cos \left(\theta_{V}-\theta_{I}\right)=I_{r m s} V_{r m s} \cos \left(\theta_{Z}\right) \\
& \text { power factor }=\frac{\text { Average power }}{\text { Apparent power }} \\
& \text { power factor }=\frac{P_{\text {avg }}}{I_{r m s} V_{r m s}}=\cos \left(\theta_{V}-\theta_{I}\right)=\cos \left(\theta_{Z}\right)
\end{aligned}
$$

\rightarrow For an inductive load, the current lags the voltage and we have a lagging power factor.
\rightarrow For a capacitive load the current leads the voltage and we have a leading power factor.
\rightarrow It is the current that lags and leads not the power factor!
\rightarrow For a purely resistive load the power factor is 1 .
\rightarrow For a purely reactive load the power factor is 0 .

Power Factor

Case Study:

An industrial load consumes 50 kW at a pf of 0.8 lagging, from a 220 V (rms), 60 Hz line.

What can we conclude?
\rightarrow Lagging pf \rightarrow Current is lagging.
$\rightarrow \quad P_{a v g}=I_{r m s} V_{r m s} \times p f=I_{r m s}(220 \mathrm{~V})(0.8)=50000 \mathrm{~W}$
$\rightarrow \quad I_{r m s}=\frac{50000 \mathrm{~W}}{(220 \mathrm{~V})(0.8)}=284.1 \mathrm{~A}$
$\rightarrow \cos \left(\theta_{V}-\theta_{I}\right)=0.8 \rightarrow\left|\theta_{V}-\theta_{I}\right|=36.9^{\circ}$

Power Factor

Given: $\quad \mathbf{V}_{\text {rms }}=220 \angle 0^{\circ} V$ and lagging current
$\rightarrow \mathbf{I}_{\text {rms }}=284.1 \angle-36.9^{\circ} A$ and $\left|\theta_{V}-\theta_{I}\right|=36.9^{\circ}$
\rightarrow The impedance of the load is:

$$
\mathbf{Z}_{L}=\frac{\mathbf{V}_{\mathrm{rms}}}{\mathbf{I}_{\mathrm{rms}}}=\frac{220}{284.1 \angle-36.9^{\circ}}=0.774 \angle 36.9^{\circ} \Omega
$$

Power Factor

$$
\mathbf{V}_{\mathrm{rms}}=220 \angle 0^{\circ} \mathrm{V} \quad \mathbf{I}_{\mathrm{rms}}=284.1 \angle-36.9^{\circ} \mathrm{A} \quad P_{\text {avg }}=50 \mathrm{~kW}
$$

\rightarrow What is the problem with the situation above?
\rightarrow How much current is required to supply the same power to a purely resistive load $(\mathrm{pf}=1)$?

$$
P_{\text {avg }}=50 \mathrm{~kW}=V_{r m s} I_{r m s}=220 I_{r m s} \quad \rightarrow \quad I_{r m s}=227.3 \mathrm{~A}
$$

\rightarrow A resistive load requires much less current.
\rightarrow This means less resistive losses ($I^{2} R$) in the transmission lines.
\rightarrow The large current in the reactive case (e.g., $\mathrm{pf}=0.8$) results from the transfer of energy back and forth from the source to the load and vice versa.

Power Factor Correction

\rightarrow Suppose we wish to raise the power factor of the plant from 0.8 lagging to 0.95 lagging.
$\Rightarrow \mathbf{Z}=0.774 \angle 36.9^{\circ} \Omega$
$\rightarrow \mathbf{Y}=\frac{1}{\mathbf{Z}}=1.29 \angle-36.9^{\circ} \mathrm{S}$

$$
\mathbf{Y}=1.03-j 0.775 S
$$

\rightarrow Existing pf:

$$
p f=\cos \left(36.9^{\circ}\right)=0.8
$$

\rightarrow Desired pf:

$$
p f=\cos \left(\theta_{\text {new }}^{o}\right)=0.95 \quad \rightarrow \text { Add parallel capacitor }
$$

Power Factor Correction

$$
\begin{aligned}
& \mathbf{Y}_{\text {new }}=1.03+j\left(B_{c}-0.775\right) \\
& p f_{\text {new }}=\cos \left(\theta_{\text {new }}^{o}\right)=0.95 \\
& \theta_{\text {new }}^{o}=-18.19^{\circ} \\
& \tan \left(\theta_{\text {new }}^{o}\right)=\frac{B_{c}-0.775}{1.03}=-0.323 \\
& B_{c}=0.437 S=\omega C=(2 \pi \times 60) C \\
& C=1158 \mu F
\end{aligned}
$$

Inductive

Maximum Average Power Transfer

Recall:

For resistive circuits, maximum power transfer occurs when the load R_{L} is set to the Thevenin equivalent resistance of the remainder of the circuit.

\rightarrow What is the relation between \mathbf{Z}_{th} and \mathbf{Z}_{L} which yields the maximum average power transfer to the load \mathbf{Z}_{L} ?
\rightarrow In the above circuit, V_{oc} is the RMS source voltage phasor, $\mathbf{V}_{\mathbf{L}}$ is the RMS voltage phasor at the load, and I_{L} is the RMS current phasor.

Maximum Average Power Transfer

$$
\begin{aligned}
& \mathbf{Z}_{t h}=R_{t h}+j X_{t h} \quad \mathbf{Z}_{L}=R_{L}+j X_{L} \\
& \mathbf{V}_{\mathbf{o c}}=V_{o c} \angle \theta_{o c} \\
& \mathbf{I}_{\mathbf{L}}=\frac{\mathbf{V}_{o c}}{\mathbf{Z}_{t h}+\mathbf{Z}_{L}} \\
& \mathbf{V}_{L}=\frac{\mathbf{Z}_{L}}{\mathbf{Z}_{t h}+\mathbf{Z}_{L}} \mathbf{V}_{o c} \\
& \mathbf{S}=\mathbf{V}_{\mathbf{L}} \mathbf{I}_{\mathbf{L}}^{*}=\frac{\mathbf{Z}_{L}}{\left(\mathbf{Z}_{t h}+\mathbf{Z}_{L}\right)} \frac{1}{\left(\mathbf{Z}_{t h}+\mathbf{Z}_{L}\right)^{*}} \mathbf{V}_{o c} \mathbf{V}_{o c}^{*}
\end{aligned}
$$

Maximum Average Power Transfer

$$
\begin{aligned}
& \mathbf{Z}_{t h}=R_{t h}+j X_{t h} \quad \mathbf{Z}_{L}=R_{L}+j X_{L} \quad \mathbf{V}_{\mathbf{o c}}=V_{o c} \angle \theta_{o c} \\
& \mathbf{S}=\mathbf{V}_{\mathbf{L}} \mathbf{I}_{\mathbf{L}}^{*}=\frac{\mathbf{Z}_{L}}{\left(\mathbf{Z}_{t h}+\mathbf{Z}_{L}\right)} \frac{1}{\left(\mathbf{Z}_{t h}+\mathbf{Z}_{L}\right)^{*}} \mathbf{V}_{o c} \mathbf{V}_{o c}^{*} \\
& \mathbf{V}_{\mathbf{o c}} \mathbf{V}_{\mathbf{o c}}^{*}=V_{o c}^{2} \\
& \mathbf{Z}_{t h}+\mathbf{Z}_{L}=R_{t h}+R_{L}+j\left(X_{t h}+X_{L}\right) \\
& \left(\mathbf{Z}_{t h}+\mathbf{Z}_{L}\right)\left(\mathbf{Z}_{t h}+\mathbf{Z}_{L}\right)^{*}=\left(R_{t h}+R_{L}\right)^{2}+\left(X_{t h}+X_{L}\right)^{2} \\
& \mathbf{S}=\frac{R_{L}+j X_{L}}{\left(R_{t h}+R_{L}\right)^{2}+\left(X_{t h}+X_{L}\right)^{2}} V_{o c}^{2} \\
& P_{a v g}=\operatorname{Re}[\mathbf{S}]=\frac{R_{L} V_{o c}^{2}}{\left(R_{t h}+R_{L}\right)^{2}+\left(X_{t h}+X_{L}\right)^{2}}
\end{aligned}
$$

Maximum Average Power Transfer

$$
P_{\text {avg }}=\operatorname{Re}[\mathbf{S}]=\frac{R_{L} V_{o c}^{2}}{\left(R_{t h}+R_{L}\right)^{2}+\left(X_{t h}+X_{L}\right)^{2}}
$$

Maximize the power: $X_{L}=-X_{t h}$

$$
\begin{gathered}
P_{a v g}=\operatorname{Re}[\mathbf{S}]=\frac{R_{L} V_{o c}^{2}}{\left(R_{t h}+R_{L}\right)^{2}} \\
\frac{d P_{a v g}}{d R_{L}}=\left(\frac{1}{\left(R_{t h}+R_{L}\right)^{2}}-\frac{2 R_{L}}{\left(R_{t h}+R_{L}\right)^{3}}\right) V_{o c}^{2}=\frac{R_{t h}-R_{L}}{\left(R_{t h}+R_{L}\right)^{3}} V_{o c}^{2}
\end{gathered}
$$

Maximum power occurs at: $R_{L}=R_{t h}$

$$
\mathbf{Z}_{L}=R_{t h}-j X_{t h}=\mathbf{Z}_{t h}^{*}
$$

Example

Find the value of \mathbf{Z}_{L} for maximum average power transfer. Then find the average power delivered to \mathbf{Z}_{L}.

\rightarrow First find the Thevenin equivalent of the circuit seen from the terminals of \mathbf{Z}_{L}.

Example

\rightarrow Thevenin equivalent of $\xrightarrow{\mathbf{I}_{1}}{ }^{j 4 \Omega}$ the circuit seen from the terminals of \mathbf{Z}_{L}.

KVL
$-\mathbf{V}_{\mathbf{x}}+j 4 \mathbf{I}_{\mathbf{1}}-\mathbf{V}_{\mathbf{x}}-\frac{4}{\sqrt{2}}=0$
Also: $\mathbf{V}_{\mathbf{x}}=-2 \mathbf{I}_{1}$

$$
-2 \mathbf{V}_{\mathbf{x}}-j 2 \mathbf{V}_{\mathbf{x}}=\frac{4}{\sqrt{2}}
$$

Example

Find Thevenin impedance:
$-\mathbf{V}_{\mathbf{x}}+j 4 \mathbf{I}_{1}+2\left(\mathbf{I}_{1}-\mathbf{I}_{\mathrm{sc}}\right)-\frac{4}{\sqrt{2}}=0$
$\frac{4}{\sqrt{2}}+2\left(\mathbf{I}_{\mathrm{sc}}-\mathbf{I}_{1}\right)-j 2 \mathbf{I}_{\mathrm{sc}}=0$
$\mathbf{V}_{\mathrm{x}}=-2\left(\mathbf{I}_{1}-\mathbf{I}_{\mathrm{sc}}\right)$
$\Rightarrow \quad \mathbf{I}_{\mathrm{sc}}=-\frac{(1+2 j)}{\sqrt{2}}$

$$
\mathbf{Z}_{t h}=\frac{\mathbf{V}_{\mathrm{oc}}}{\mathbf{I}_{\mathrm{sc}}}=\frac{\frac{3+j}{\sqrt{2}}}{\frac{(1+2 j)}{\sqrt{2}}}=1-j \Omega
$$

Example

$$
\begin{aligned}
& \mathbf{V}_{\mathbf{o c}}=-2.24 \angle 18.43^{\circ} V \mathrm{rms} \\
& \mathbf{Z}_{t h}=1-j=\sqrt{2} \angle-45^{\circ} \Omega
\end{aligned}
$$

For maximum average power transfer:

$$
\begin{aligned}
& \mathbf{Z}_{L}=\mathbf{Z}_{t h}^{*}=1+j=\sqrt{2} \angle 45^{\circ} \Omega \\
& \mathbf{I}_{\mathbf{L}}=\frac{-2.24 \angle 18.43}{2}=-1.118 \angle 18.43^{\circ} \mathrm{A} \\
& \mathbf{V}_{\mathbf{L}}=\mathbf{I}_{\mathbf{L}} \mathbf{Z}_{L} \quad \mathbf{S}=\mathbf{I}_{\mathbf{L}}^{*} \mathbf{V}_{\mathbf{L}}=\mathbf{I}_{\mathbf{L}} \mathbf{I}_{\mathbf{L}}^{*} \mathbf{Z}_{L}=(1.118)^{2}(1+j) \\
& P_{a v g}=\operatorname{Re}[\mathbf{S}]=(1.118)^{2}=1.25 \mathrm{~W}
\end{aligned}
$$

Superposition and Power

Consider the following de circuit:

We can use superposition to find v_{1}.
it v_{1} due to first source alone:

$$
v_{1}^{\prime}=\frac{2 \Omega \| 2 \Omega}{2 \Omega \| 2 \Omega+2 \Omega} 3=1 V
$$

(1) v_{1} due to second source alone:

$$
v_{1}^{\prime \prime}=\frac{2 \Omega \| 2 \Omega}{2 \Omega \| 2 \Omega+2 \Omega} 3=1 V
$$

Total voltage: $\quad v_{1}=v_{1}^{\prime}+v_{1}^{\prime \prime}=2 V$

Calculate power dissipated in this resistor.

Power: $P=\frac{v_{1}^{2}}{R}=2 W$

Superposition and Power

Consider the same dc circuit again:

$$
P_{1}=\frac{(1)^{2}}{2}=0.5 \mathrm{~W} \quad V_{1}=1
$$

Power due to second source alone

Calculate power dissipated in this resistor.

$$
P_{2}=\frac{(1)^{2}}{2}=0.5 W \quad V_{1}=1
$$

Total power: $\quad P=P_{1}+P_{2}=1 W \longrightarrow$ Wrong answer!!!

Superposition and Power

1. In general we cannot apply the superposition principle directly to determine the power.
2. One can show that power superposition works for sources of different frequencies, but we will not worry about this here.
3. Do not apply superposition directly to calculate the power!
