ECSE 210: Circuit Analysis Lecture \#14:

AC Steady State Analysis
Steady State Power Analysis

Sources With Different Frequencies

\rightarrow Two sources at different frequencies.
\rightarrow We must use superposition.
(Only meaningful in the time domain!)

Sources With Different Frequencies

Sources With Different Frequencies

$$
\mathbf{V}_{\mathrm{C}}=\frac{(-j 2 \Omega) \|(2 \Omega+j 1 \Omega)}{1 \Omega+(-j 2 \Omega) \|(2 \Omega+j 1 \Omega)}\left(5 \angle 45^{\circ}\right)
$$

$$
\mathbf{V}_{\mathbf{C}}=\left(0.7 \angle-12.09^{\circ}\right)\left(5 \angle 45^{\circ}\right)=3.5 \angle 32.9^{\circ}
$$

$$
v_{1}(t)=3.5 \cos \left(t+32.9^{\circ}\right) \mathrm{V}
$$

Sources With Different Frequencies

$$
\mathbf{V}_{\mathrm{C}}=\frac{(2 \Omega+j 2 \Omega) \|(1 \Omega)}{(2 \Omega+j 2 \Omega) \|(1 \Omega)-j 1 \Omega}\left(12 \angle 0^{\circ}\right)
$$

$$
\begin{aligned}
& \mathbf{V}_{\mathbf{C}}=\left(0.686 \angle 59.04^{\circ}\right)\left(12 \angle 0^{\circ}\right)=8.23 \angle 59.04^{\circ} \mathrm{V} \\
& \mathbf{V}_{2}=\left(8.23 \angle 59.04^{\circ}\right)-\left(12 \angle 0^{\circ}\right)=10.5 \angle 138^{\circ} \mathrm{V} \\
& v_{2}(t)=10.5 \cos \left(2 t+138^{\circ}\right) \mathrm{V}
\end{aligned}
$$

Sources With Different Frequencies

$$
\begin{aligned}
& v_{1}(t)=3.5 \cos \left(t+32.9^{\circ}\right) \quad \mathrm{V} \\
& v_{2}(t)=10.5 \cos \left(2 t+138^{\circ}\right) \quad \mathrm{V} \\
& v(t)=v_{1}(t)+v_{2}(t)=3.5 \cos \left(t+32.9^{\circ}\right)+10.5 \cos \left(2 t+138^{\circ}\right)
\end{aligned}
$$

\rightarrow Note we can only add waveforms at different frequencies in the time domain. We CANNOT add their phasors. Each phasor is defined at a specific frequency and phasors with different frequencies cannot be added.

Instantaneous Power

Passive Sign Convention:

\rightarrow Power supplied to circuit/circuit element:

$$
p(t)=i(t) v(t)
$$

\rightarrow In the case of sinusoidal excitation in the steady state:

$$
\begin{aligned}
& v(t)=V_{m} \cos \left(\omega t+\theta_{V}\right) \quad i(t)=I_{m} \cos \left(\omega t+\theta_{I}\right) \\
& p(t)=I_{m} V_{m} \cos \left(\omega t+\theta_{V}\right) \cos \left(\omega t+\theta_{I}\right)
\end{aligned}
$$

\rightarrow Recall: $\cos (\alpha) \cos (\beta)=\frac{1}{2}[\cos (\alpha+\beta)+\cos (\alpha-\beta)]$

Instantaneous Power

$$
\left\{\begin{array}{l}
p(t)=I_{m} V_{m} \cos \left(\omega t+\theta_{V}\right) \cos \left(\omega t+\theta_{I}\right) \\
p(t)=\underbrace{\frac{I_{m} V_{m}}{2} \cos \left(\theta_{V}-\theta_{I}\right.}_{\text {Constant }})+\underbrace{\frac{I_{m} V_{m}}{2} \cos \left(2 \omega t+\theta_{V}+\theta_{I}\right)}_{\text {Periodic in time }}
\end{array}\right.
$$

1. For circuits with time varying inputs (e.g., sinusoidal input) the instantaneous power is a function of time denoted as $p(t)$.
2. For circuits with sinusoidal inputs in the steady state, $p(t)$ has a constant component and a periodic component.

Example 1

$$
\mathbf{I}=\frac{\mathbf{V}}{Z}=\frac{10 \angle 0^{\circ}}{130 \angle 67.4^{\circ}}=76.9 \angle-67.4^{\circ}
$$

$$
i(t)=76.9 \cos \left(10^{4} t-67.4^{\circ}\right) \mathrm{mA}
$$

$$
p(t)=\left[76.9 \cos \left(10^{4} t-64^{\circ}\right)\right]\left[10 \cos \left(10^{4} t\right)\right]
$$

$$
=\frac{769}{2} \cos \left(67.4^{\circ}\right)+\frac{769}{2} \cos \left(2 \times 10^{4} t-67.4^{\circ}\right) \mathrm{mW}
$$

$$
\begin{aligned}
& v(t)=10 \cos \left(10^{4} t\right) \mathrm{V} \\
& \mathbf{V}=10 \angle 0^{\circ} \mathrm{V} \\
& Z=50 \Omega+j \omega L \Omega=50+j 120 \Omega \\
& =130 \angle 67.4^{\circ} \Omega
\end{aligned}
$$

Example 1

Average Power

\rightarrow In the case of periodic excitation in the steady-state, the instantaneous power $p(t)$ is a periodic function of time.
\rightarrow The average value of $p(t)$ over one period (the average power) is a useful indicator of how much power is absorbed/supplied.
\rightarrow The average power is NOT a function of time for a periodic excitation!
\rightarrow For a general periodic function $x(t)$, such that $x(t+T)=x(t)$ the average value X is given by

$$
X_{a v e}=\frac{1}{T} \int_{t_{o}}^{t_{o}+T} x(\tau) d \tau
$$

Average Power

\rightarrow In the case of Example 1:

$$
p(t)=0.15+0.38 \cos \left(2 \times 10^{4} t-67.4^{\circ}\right)
$$

$$
\begin{aligned}
& P_{\text {avg }}=\frac{1}{T} \int_{0}^{T} p(\tau) d \tau=\underbrace{\frac{1}{T} \int_{0}^{T} 0.15 d \tau}_{0.15}+\frac{1}{T} \underbrace{\int_{0}^{T} 0.38 \cos \left(2 \times 10^{4} \tau-67.4^{\circ}\right) d \tau}_{\text {zero }} \\
& P_{\text {avg }}=0.15 \mathrm{~W}
\end{aligned}
$$

Average Power

\rightarrow General case

$$
p(t)=\underbrace{\frac{I_{m} V_{m}}{2} \cos \left(\theta_{V}-\theta_{I}\right)}_{\text {constant }}+\frac{I_{m} V_{m}}{2} \cos \left(2 \omega t+\theta_{V}+\theta_{I}\right)
$$

$$
P_{\text {avg }}=\frac{1}{T} \int_{0}^{T} \frac{I_{m} V_{m}}{2} \cos \left(\theta_{V}-\theta_{I}\right) d \tau+\underbrace{\frac{1}{T} \int_{0}^{T} \frac{I_{m} V_{m}}{2} \cos \left(2 \omega \tau+\theta_{V}+\theta_{I}\right) d \tau}_{\text {zero }}
$$

$$
P_{\text {aug }}=\frac{I_{m} V_{m}}{2} \cos \left(\theta_{V}-\theta_{I}\right)
$$

Average Power Consumed by a General Load

$$
\begin{array}{ll}
\mathbf{Z}=Z \angle \theta_{Z} \\
P_{\text {avg }}=\frac{I_{m} V_{m}}{2} \cos \left(\theta_{V}-\theta_{I}\right) \quad V_{m} \angle \theta_{V} \mathrm{~V} \\
V_{m} \angle \theta_{V}=\left(I_{m} \angle \theta_{I}\right)\left(Z \angle \theta_{Z}\right)=I_{m} Z \angle\left(\theta_{I}+\theta_{Z}\right) \\
V_{m}=I_{m} Z & \theta_{V}=\theta_{I}+\theta_{Z} \\
I_{m}=\frac{V_{m}}{Z} \quad \theta_{I}=\theta_{V}-\theta_{Z}
\end{array}
$$

\rightarrow Substitute into power equation:

Average Power in a Resistor

For ac

$$
\begin{aligned}
& \text { If } \quad \mathbf{Z}=R \\
& P_{\text {avg }}=\frac{1}{2} I_{m}^{2} R \cos (0)=\frac{1}{2} I_{m}^{2} R
\end{aligned}
$$

Note that by using phasors and
 impedances we are implicitly assuming sinusoidal signals.
\rightarrow In the case of dc , the average power in a resistor is:

$$
P_{d c}=i_{d c}^{2} R
$$

\rightarrow What is the dc current that produces the same average power as ac case?

$$
\frac{I_{m}}{\sqrt{2}}
$$

Root Mean Square

We define the Effective or Root Mean Square (RMS)
value of a sinusoidal voltage or current waveform as the amplitude divided by the square root of 2 :

$$
I_{r m s}=\frac{I_{m}}{\sqrt{2}} \quad V_{r m s}=\frac{V_{m}}{\sqrt{2}}
$$

In this case, the average power in a general impedance is given by:

$$
P_{\text {avg }}=\frac{I_{m} V_{m}}{2} \cos \left(\theta_{V}-\theta_{I}\right)=I_{r m s} V_{r m s} \cos \left(\theta_{V}-\theta_{I}\right)
$$

$$
P_{a v g}=I_{r m s}^{2} Z \cos \left(\theta_{z}\right)
$$

$$
P_{a v g}=\frac{V_{r m s}^{2}}{Z} \cos \left(\theta_{Z}\right)
$$

RMS Value of a Periodic Waveform

1. We looked at the RMS or effective value of sinusoidal wave forms.
2. This is a useful way of comparing average power due to general periodic waveforms.
\rightarrow Consider the instantaneous power in a resistor:

$$
p(t)=i^{2}(t) R
$$

\rightarrow The average power is:

$$
P_{\text {avg }}=\frac{1}{T} \int_{0}^{T} p(\tau) d \tau=\frac{1}{T} \int_{0}^{T} i^{2}(\tau) R d \tau
$$

RMS Value of a Periodic Waveform

$$
\begin{aligned}
& P_{\text {avg }}=\frac{1}{T} \int_{0}^{T} i^{2}(\tau) R d \tau=R\left[\frac{1}{T} \int_{0}^{T} i^{2}(\tau) d \tau\right]=R I_{r m s}^{2}+\downarrow^{i(t)} \\
& \begin{array}{l}
\text { The } \text { effective value of the periodic waveform } i(t) \text { is the } \\
\text { dc current that results in the same average power: }
\end{array}
\end{aligned}
$$

$$
I_{r m s}=\sqrt{\frac{1}{T} \int_{0}^{T} i^{2}(\tau) d \tau}
$$

The above quantity is the root of the mean of the square of $i(t)$ also known as the Root Mean Square (RMS) or effective value.

RMS Value of a Sine Wave

$$
\begin{aligned}
& i(t)=I_{m} \cos \left(\omega t+\theta_{I}\right) \quad T=\frac{2 \pi}{\omega} \\
& I_{r m s}=\sqrt{\frac{1}{T} \int_{0}^{T} i^{2}(\tau) d \tau}=\sqrt{\frac{\omega}{2 \pi} \int_{0}^{\frac{2 \pi}{\omega}} I_{m}^{2} \cos ^{2}\left(\omega \tau+\theta_{I}\right) d \tau}
\end{aligned}
$$

Recall: $\cos ^{2}(\alpha)=\frac{1}{2}+\frac{1}{2} \cos (2 \alpha)$

$$
I_{r m s}=I_{m} \sqrt{\frac{\omega}{2 \pi} \int_{0}^{\frac{2 \pi}{\omega}}\left[\frac{1}{2}+\frac{1}{2} \cos \left(2 \omega \tau+2 \theta_{I}\right)\right] d \tau}=\frac{I_{m}}{\sqrt{2}}
$$

RMS Example

RMS Example

Since

$$
\begin{aligned}
& v(t)= \begin{cases}4 t \mathrm{~V} & 0<t \leq 1 \\
0 \mathrm{~V} & 1<t \leq 2 \\
-4 t+8 \mathrm{~V} & 2<t \leq 3\end{cases} \\
& V_{r m s}=\sqrt{\frac{1}{3}\left[\int_{0}^{1}(4 \tau)^{2} d \tau+\int_{1}^{2}(0)^{2} d \tau+\int_{2}^{3}(-4 \tau+8)^{2} d \tau\right]} \\
& V_{r m s}=\sqrt{\frac{1}{3}\left[\frac{\left.\left.16 t^{3}\right|^{1}+\left.\left(64 t-\frac{64 t^{2}}{2}+\frac{16 t^{3}}{3}\right)\right|_{2} ^{3}\right]}{}=1.89 V\right.}
\end{aligned}
$$

RMS Conclusion

\rightarrow The RMS value of a periodic waveform is a measure to compare the effectiveness of sources in delivering power to a resistive load.
\rightarrow The RMS or effective value of a waveform is the value of the $d c$ waveform that supplies the same average power to a resistive load.
\rightarrow In the case of sinusoidal waveforms, we have shown that the RMS value is given by:

$$
\begin{gathered}
i(t)=I_{m} \cos \left(\omega t+\theta_{I}\right) \\
I_{r m s}=\frac{I_{m}}{\sqrt{2}}
\end{gathered}
$$

RMS Phasor

$$
\begin{aligned}
& \mathbf{v}_{\mathrm{rms}}=\frac{V_{m}}{\sqrt{2}} \angle \theta_{V} \\
& \mathbf{I}_{\mathrm{rms}}=\frac{I_{m}}{\sqrt{2}} \angle \theta_{I}
\end{aligned}
$$

$$
V_{m} \angle \theta_{V}=\left(I_{m} \angle \theta_{I}\right)\left(Z \angle \theta_{Z}\right)=I_{m} Z \angle\left(\theta_{I}+\theta_{Z}\right)
$$

$$
V_{m m s} \angle \theta_{V}=\left(I_{m s} \angle \theta_{I}\right)\left(Z \angle \theta_{z}\right)=I_{r m s} Z \angle\left(\theta_{I}+\theta_{z}\right)
$$

\rightarrow Note: The impedance is still the same!
\rightarrow Example: Find the RMS phasor of: $v(t)=4 \cos \left(4 t+30^{\circ}\right)$

$$
\mathbf{V}_{\mathrm{rms}}=V_{r m s} \angle \theta_{v}=\frac{4}{\sqrt{2}} \angle 30^{\circ}
$$

AC Steady-State Power

$$
\begin{array}{ll}
P_{a v g}=\frac{I_{m} V_{m}}{2} \cos \left(\theta_{V}-\theta_{I}\right) & P_{a v g}=I_{r m s} V_{r m s} \cos \left(\theta_{V}-\theta_{I}\right) \\
P_{a v g}=\frac{1}{2} I_{m}^{2} Z \cos \left(\theta_{Z}\right) & P_{a v g}=I_{r m s}^{2} Z \cos \left(\theta_{Z}\right) \\
P_{a v g}=\frac{1}{2} \frac{V_{m}^{2}}{Z} \cos \left(\theta_{Z}\right) & P_{a v g}=\frac{V_{r m s}^{2}}{Z} \cos \left(\theta_{Z}\right)
\end{array}
$$

