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AC Steady State Analysis

Steady State Power Analysis



Sources With Different Frequencies
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Two sources at different frequencies.

We must use superposition.
(Only meaningful in the time domain!)
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Sources With Different Frequencies
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Sources With Different Frequencies
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Sources With Different Frequencies

)1382cos(5.10)(2
ottv +=

V

)1382cos(5.10)9.32cos(5.3)()()( 21
oo tttvtvtv +++=+=

)9.32cos(5.3)(1
ottv +=

V

Note we can only add waveforms at different frequencies 
in the time domain. We CANNOT add their phasors. Each 
phasor is defined at a specific frequency and phasors with 
different frequencies cannot be added.



Instantaneous Power
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In the case of sinusoidal 
excitation in the steady state:
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Instantaneous Power
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Constant Periodic in time

1. For circuits with time varying inputs (e.g., sinusoidal 
input) the instantaneous power is a function of time 
denoted as p(t).

2. For circuits with sinusoidal inputs in the steady state, 
p(t) has a constant component and a periodic 
component.
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Example 1
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Average Power

In the case of periodic excitation in the 
steady-state, the instantaneous power p(t)
is a periodic function of time. 
The average value of p(t) over one period (the 
average power) is a useful indicator of how 
much power is absorbed/supplied.
The average power is NOT a function of time 
for a periodic excitation!

For a general periodic function x(t), such that x(t+T)=x(t) 
the average value X is given by
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Average Power

In the case of Example 1:

Pavg =
1
T

p(τ )dτ
0

T

∫ =
1
T

0.15dτ
0

T

∫ +
1
T

0.38cos(2 ×104τ − 67.4o)dτ
0

T

∫

)4.67102cos(38.015.0)( 4 ottp −×+=

15.0 zero

Pavg = 0.15 W



Average Power
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Average Power Consumed by a General Load
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Substitute into power equation:
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Average Power in a Resistor
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In the case of dc, the average power in a resistor is:

Note that by using phasors and 
impedances we are implicitly 
assuming sinusoidal signals.

Pdc = idc
2 R

What is the dc current that produces the same average 
power as ac case?
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Root Mean Square
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We define the Effective or Root Mean Square (RMS)
value of a sinusoidal voltage or current waveform as the 
amplitude divided by the square root of 2: 
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In this case, the average power in a 
general impedance is given by: 
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RMS Value of a Periodic Waveform

1. We looked at the RMS or effective value of 
sinusoidal wave forms.

2. This is a useful way of comparing average power 
due to general periodic waveforms. 

Consider the instantaneous power in a resistor:
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The average power is:
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RMS Value of a Periodic Waveform
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The effective value of the periodic waveform i(t) is the 
dc current that results in the same average power:
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The above quantity is the root of the mean of the square of 
i(t) also known as the Root Mean Square (RMS) or 
effective value.



RMS Value of a Sine Wave
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RMS Example
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RMS Example
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RMS Conclusion

The RMS value of a periodic waveform is a measure to 
compare the effectiveness of sources in delivering power 
to a resistive load. 
The RMS or effective value of a waveform is the value of 
the dc waveform that supplies the same average power 
to a resistive load.
In the case of sinusoidal waveforms, we have shown that 
the RMS value is given by:
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RMS Phasor
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Note: The impedance is still the same!
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AC Steady-State Power
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