ECSE 210: Circuit Analysis
Lecture #14:

AC Steady State Analysis
Steady State Power Analysis



Sources With Different Frequencies
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—> Two sources at different frequencies.

- We must use superposition.
(Only meaningful in the time domain!)
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Sources With Different Frequencies
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V. =(0.7£-12.09°)(5£45°) = 3.5/£32.9°

v,(¢) =3.5cos(t+32.9%) vy



Sources With Different Frequencies
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V. = (0.686.£59.04°)(12.£0°) = 8.23./59.04° V

V, =(8.23£59.04°)-(12£0°)=10.5£138° V
v,(t)=10.5cos(2t+138%) v



Sources With Different Frequencies

v,(t)=3.5cos(t+32.9°) Vv

v,(t)=10.5cos(2t+138%) Vv
v(t) =v,(t)+v,(t)=3.5cos(¢+32.9°)+10.5cos(2¢ +138")

- Note we can only add waveforms at different frequencies
in the time domain. We CANNOT add their phasors. Each

phasor 1s defined at a specific frequency and phasors with
different frequencies cannot be added.



Instantaneous Power

- - L (1
Passive Sign Convention: . (?)

- Power supplied to
circuit/circuit element:

p(t) =i(t)v(1) -

- In the case of sinusoidal
excitation in the steady state:

v(t)=V cos(wt+6,) i(t)=1, cos(wt+0,)

v(t) Electric Circuit/
Circuit Element

p)=11V cos(wt+0,)cos(wt+0,)

> Recall: cos(a)cos(f) = %[cos(a + )+ cos(a — ,6’)]



Instantaneous Power

p)=11V cos(wt+06,)cos(wt+0,)

LV LV
p(t)=—""cos(0, —0,)+—""cosLat+0, +0,)
Y Y
Constant Periodic in time

1. For circuits with time varying inputs (e.g., sinusoidal
input) the instantaneous power is a function of time
denoted as p(1).

2. For circuits with sinusoidal inputs in the steady state,
p(t) has a constant component and a periodic
component.



Example 1

i(t) 50Q
— >

v(£) =10cos(10%) V J:
v=10£0"V 10cos(0°V () ;) 12mH
Z=50Q+ jolQ =50+ /1200 _

=130£67.4°Q O

10£0°
= v = =769/-674°
Z 130£67.4°

i(t)=76.9cos(10*# —67.4°) mA

p(t) =76.9cos(10*¢ — 64°) |[10 cos(10*1)

:?005(67-40)+?008(2X104t—67-40) mW



Example 1

v(t) (V)

i(t) (mA)

p(t) (W)

0 0.2 0.4 0.6 0.8 1 1.2

Time (s) x 107

p(t)=0.15+0.38cos(2x10*t —67.4°) W



Average Power

- In the case of periodic excitation in the
steady-state, the instantaneous power p(t)

IS a periodic function of time.

- The average value of p(t) over one period (the
average power) is a useful indicator of how
much power is absorbed/supplied.

- The average poweris NOT a function of time
for a periodic excitation!

- For a general periodic function x(?), such that x(t+7)=x(1)
the average value Xis given by

t,+T

|
Xoe =7 J x(r)dr



Average Power

- In the case of Example 1:

p(t)=0.15+0.38cos(2x10*r - 67.4°)

17 17 1 ¢ , )
P, = ?_([p(r)drz ?_([0.15612'4—?_!;0.38008(2 x10* 7—67.4°)dr

\ J — _/
Y Y

0.15 zero

P, =0.15 W



Average Power

- (General case
LV LV

p(t) = ’”2 =cos(6, —0,)+ ’"2 ~cos(2at+ 6, +06,)
\\ _/
Y
constant
1 ¢V, 1 ¢V,
P, = T-([ 5 cos(6, — 6,)dr + T-([ 5 cosRQwr+ 0, +0,)dt
— _/




Average Power Consumed by a General Load

7.-7/0, 1,20,

)
A

P —ImV’"cos(H 0,) T
=00 v )y

Z/0,

v ,6,=(120,)2£0,)=1 2.6, +6,)

)
A

v =17 0,=0,+0,

]m
Vm
]m 7 Hl :HV_HZ




Average Power in a Resistor

'For ac I /6
If Z=R CL
1 1 +
P, =—I'Rcos(0)=—=1I’'R
avg 9) m ( ) o m (—l—) V(t) 7
Vv 20,V
Note that by using phasors and o |

impedances we are implicitly
assuming sinusoidal signals.

- In the case of dc, the average power in a resistor is:
P, =i R

c

- What is the dc current that produces the same average
power as ac case? I

m
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Root Mean Square

We define the Effective or Root Mean Square (RMS)
value of a sinusoidal voltage or current waveform as the
amplitude divided by the square root of 2:

In this case, the average power in a
general impedance is given by:

1y,

P

avg

“=cos(0, — 0,) = cos(6, —0,)

rms rms

2

”
P =Ichos(62) P :?COS(GZ)

v
avg e



RMS Value of a Periodic Waveform

1. We looked at the RMS or effective value of
sinusoidal wave forms.

2. This is a useful way of comparing average power
due to general periodic waveforms.

- Consider the instantaneous power in a resistor:

p®)=i*(OR
- The average power is:

i(¢)

T i l
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P, - % jo p(eMz = [*(r)Rdz V()
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RMS Value of a Periodic Waveform

avg
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The effective value of the periodic waveform i(?) 1s the
dc current that results in the same average power:

1 T

[ = —Iiz(r)dr

rms
T

0

The above quantity 1s the root of the mean of the square of
i() also known as the Root Mean Square (RMS) or

effective value.



RMS Value of a Sine Wave
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RMS Example

(4t V 0<t<l1
vt)=< 0V l<t<2
\-4t+8V 3<t<3
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RMS Example

Since a
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RMS Conclusion

- The RMS value of a periodic waveform is a measure to
compare the effectiveness of sources in delivering power
to a resistive load.

- The RMS or effective value of a waveform is the value of
the dc waveform that supplies the same average power
to a resistive load.

- In the case of sinusoidal waveforms, we have shown that
the RMS value is given by:

i(¢)=1_cos(wt+06,)

]m
I, =-n

rms \/E



RMS Phasor
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—> Note: The impedance is still the same!
- Example: Find the RMS phasor of: v(#) = 4cos(4t+30°)

V =V /0 = Z30°
rms \/§



AC Steady-State Power
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