ECSE 210: Circuit Analysis

Lecture #12:

Impedance, Admittance, & Phasor Circuits

Circuit Elements Summary

or

Resistor: $\mathbf{V} = R\mathbf{I}$

Inductor: $\mathbf{V} = j\omega L\mathbf{I}$

Capacitor $\mathbf{I} = j\omega C\mathbf{V}$

$$\mathbf{V} = \frac{1}{j\omega C}\mathbf{I}$$

In general: V = ZI

where:

$$Z = R \rightarrow \text{Resistor}$$

$$Z = j\omega L \rightarrow \text{Inductor}$$

$$Z = \frac{1}{j\omega C} \rightarrow \text{Capacitor}$$

Z in ac circuits is analogous to R in dc circuits. It is a complex quantity but NOT a phasor!

Input Impedance

Define the two terminal *input impedance* (or *driving-point* impedance):

 $\mathbf{Z} = \frac{\mathbf{V}}{\mathbf{I}} = \frac{V_m \angle \theta_v}{I_m \angle \theta_i} = Z \angle \theta_z$

Complex number

- \rightarrow SI units for Z is Ohms (Ω)
- \rightarrow Z in ac circuits is analogous to R in dc circuits.
- → Z is in general a complex quantity, but it is NOT a phasor!

The impedance is usually expressed as:

 $\mathbf{Z}(j\omega) = R(\omega) + jX(\omega)$ A complex quantity

- → The real part $R(\omega)$ is the resistive component; or *resistance*.
- → The imaginary part $X(\omega)$ is the reactive component or *reactance*.
- → Both *R* and *X* are functions of ω (frequency).
- \rightarrow **Z**(*j* ω) depends on frequency.

→ In polar form:
$$\mathbf{Z} = R + jX = |\mathbf{Z}| \angle \theta_z$$

 $|\mathbf{Z}| = \sqrt{R^2 + X^2}$ $\theta_z = \arctan\left(\frac{X}{R}\right)$
 $R = |\mathbf{Z}|\cos(\theta_z)$ $X = |\mathbf{Z}|\sin(\theta_z)$

Impedance

→ Negative reactance → circuit is said to be *capacitive*.
 → Positive reactance → circuit is said to be *inductive*.

Admittance

The admittance is defined as: $Y(j\omega) = \frac{1}{Z(j\omega)}$

 $\mathbf{Y}(j\omega) = G(\omega) + jB(\omega) \rightarrow A$ complex quantity

- \rightarrow SI units for Y is Siemens (S)
- \rightarrow Y in ac circuits is analogous to G in dc circuits.
- → Y is in general a complex quantity, but it is NOT a Phasor!

Admittance

$$\mathbf{Y}(j\omega) = G(\omega) + jB(\omega) \rightarrow A$$
 complex quantity

- → The real part $G(\omega)$ is the resistive component; called **conductance**.
- → The imaginary part $B(\omega)$ is the reactive component or susceptance.
- → Both G and B are functions of ω (frequency).
- \rightarrow Y(*j* ω) depends on frequency.

→ In polar form:
$$\mathbf{Y} = G + jB = |\mathbf{Y}| \angle \theta_Y$$

 $\mathbf{Y} = \sqrt{G^2 + B^2}$ $\theta_Y = \arctan\left(\frac{B}{G}\right)$
 $G = |\mathbf{Y}| \cos(\theta_Y)$ $B = |\mathbf{Y}| \sin(\theta_Y)$

Admittance

→ Positive susceptance → circuit is said to be *capacitive*.
→ Negative susceptance → circuit is said to be *inductive*.

KCL/KVL for Phasor Circuits

→ KCL in time domain: $i_1(t) + i_2(t) + i_3(t) + i_4(t) + i_5(t) + K = 0$

→ Complex exponential input: $i_1(t) + i_2(t) + i_3(t) + i_4(t) + i_5(t) + K = 0$ $\mathbf{I_1}e^{j\omega t} + \mathbf{I_2}e^{j\omega t} + \mathbf{I_3}e^{j\omega t} + \mathbf{I_4}e^{j\omega t} + \mathbf{I_5}e^{j\omega t} + K = 0$

→ KCL for phasors $\mathbf{I}_1 + \mathbf{I}_2 + \mathbf{I}_3 + \mathbf{I}_4 + \mathbf{I}_5 + \mathbf{K} = 0$

→ We can use the same approach to prove KVL for phasor circuits.

Series and Parallel Combinations

- → Phasor terminal relationships are linear and in the same form as in the case of dc circuits (except in this case we have complex numbers).
- \rightarrow KCL and KVL are valid for phasor circuits.
 - ➔ We can derive network theorems that are similar to the dc case.
 - → Example: Element series and parallel combinations

Parallel Combinations

Series Combinations

→ Inductive

Find an equivalent circuit for the impedance: $\mathbf{Z} = 10 \angle 30^{\circ}$ \rightarrow Option #1: $\mathbf{Z} = 10 \angle 30^{\circ} = 8.66 + j5\Omega$

Find an equivalent circuit for the impedance: $\mathbf{Z} = 10 \angle 30^{\circ}$

$$\rightarrow$$
 Option #2: $\mathbf{Z} = 10 \angle 30^\circ = 8.66 + j5\Omega$

$$\mathbf{Y} = \frac{1}{10\angle 30^{\circ}} = 0.1\angle -30^{\circ} = 0.0866 - j0.05$$

 \rightarrow Negative susceptance \rightarrow inductive

 $\mathbf{Z}_{eq} = 1\Omega \| (-2j\Omega) + [4\Omega + j2\Omega + j4\Omega \| (-j2\Omega)] \| (2\Omega + j6\Omega - j2\Omega)$ $\mathbf{Z}_{eq} = 3.8 + j0.6\Omega$

AC Steady State Analysis

- **Basis:** KCL, KVL and V=ZI can be used to solve linear, *ac steady-state* circuit problems.
- → Consider the network theorems (and other linear circuit analysis techniques) developed for resistive dc circuits for ac steady-state analysis of RLC circuits.
- → It may be confirmed that each time-domain method is valid for frequency domain analysis. (Derive equivalent frequency domain results based on the phasor form of KCL, KVL and V=IZ.)
- → We will consider a selection of illustrative ac steady-state (phasor) circuit analysis examples.