ECSE 210: Circuit Analysis

Lecture \#12:

Impedance, Admittance, \& Phasor Circuits

Circuit Elements Summary

Resistor: $\quad \mathbf{V}=R \mathbf{I}$

Inductor: $\quad \mathbf{V}=j \omega L \mathbf{I}$
Capacitor $\quad \mathbf{I}=j \omega C \mathbf{V} \quad$ or $\quad \mathbf{V}=\frac{1}{j \omega C} \mathbf{I}$
In general: $\quad \mathbf{V}=\mathbf{Z}$
where:

$$
\left.\begin{array}{cl}
Z=R & \rightarrow \text { Resistor } \\
Z=j \omega L & \rightarrow \text { Inductor } \\
Z=\frac{1}{j \omega C} & \rightarrow \text { Capacitor }
\end{array}\right\} \begin{aligned}
& \mathrm{Z} \text { in ac circuits is } \\
& \text { analogous to } \mathrm{R} \text { in dc } \\
& \text { circuits. It is a complex } \\
& \text { quantity but NOT a phasor! }
\end{aligned}
$$

Input Impedance

Define the two terminal input impedance (or driving-point impedance):

$$
\mathbf{Z}=\frac{\mathbf{v}}{\mathbf{I}}=\frac{V_{m} \angle \theta_{v}}{I_{m} \angle \theta_{i}}=Z \angle \theta_{z}
$$

\rightarrow SI units for Z is Ohms (Ω)
$\rightarrow \mathrm{Z}$ in ac circuits is analogous to R in dc circuits.
$\rightarrow \mathbf{Z}$ is in general a complex quantity, but it is NOT a phasor!

Impedance

The impedance is usually expressed as:

$$
\mathbf{Z}(j \omega)=R(\omega)+j X(\omega) \quad \text { A complex quantity }
$$

\rightarrow The real part $R(\omega)$ is the resistive component; or resistance.
\rightarrow The imaginary part $X(\omega)$ is the reactive component or reactance.
\rightarrow Both R and X are functions of ω (frequency).
$\rightarrow \mathbf{Z}(j \omega)$ depends on frequency.
\rightarrow In polar form: $\mathbf{Z}=R+j X=|\mathbf{Z}| \angle \theta_{z}$

$$
\begin{array}{lr}
|\mathbf{Z}|=\sqrt{R^{2}+X^{2}} & \theta_{z}=\arctan \\
R=|\mathbf{Z}| \cos \left(\theta_{z}\right) & X=|\mathbf{Z}| \sin \left(\theta_{z}\right)
\end{array}
$$

Impedance

Passive Element

Impedance

$$
\begin{array}{ll}
\mathrm{R} & \mathbf{Z}=R \\
\mathrm{~L} & \mathbf{Z}=s L=j \omega L=j X_{L}=\omega L \angle 90 \\
\mathrm{C} & \mathbf{Z}=\frac{1}{s C}=\frac{1}{j \omega C}=\frac{-1}{\omega C} j=j X_{C}=\frac{1}{\omega C} \angle-90
\end{array}
$$

$$
X_{L}=\omega L \quad X_{C}=-\frac{1}{\omega C}
$$

\rightarrow Negative reactance \rightarrow circuit is said to be capacitive.
\rightarrow Positive reactance \rightarrow circuit is said to be inductive.

Admittance

The admittance is defined as: $\quad \mathbf{Y}(j \omega)=\frac{1}{\mathbf{Z}(j \omega)}$
$\mathbf{Y}(j \omega)=G(\omega)+j B(\omega) \rightarrow$ A complex quantity
$\rightarrow \mathrm{SI}$ units for Y is Siemens (S)
$\rightarrow \mathrm{Y}$ in ac circuits is analogous to G in dc circuits.
$\rightarrow \mathrm{Y}$ is in general a complex quantity, but it is NOT a Phasor!

Admittance

$\mathbf{Y}(j \omega)=G(\omega)+j B(\omega) \quad \rightarrow$ A complex quantity

\rightarrow The real part $G(\omega)$ is the resistive component; called conductance.
\rightarrow The imaginary part $B(\omega)$ is the reactive component or susceptance.
\rightarrow Both G and B are functions of ω (frequency).
$\rightarrow \mathbf{Y}(j \omega)$ depends on frequency.
\rightarrow In polar form: $\mathbf{Y}=G+j B=|\mathbf{Y}| \angle \theta_{Y}$

$$
\begin{aligned}
& \mathbf{Y}=\sqrt{G^{2}+B^{2}} \theta_{Y}=\arctan \left(\frac{B}{G}\right) \\
& G=|\mathbf{Y}| \cos \left(\theta_{Y}\right) \\
& B=|\mathbf{Y}| \sin \left(\theta_{Y}\right)
\end{aligned}
$$

Admittance

Passive Element Admittance

$$
\begin{array}{ll}
\hline \mathrm{R} & \mathbf{Y}=\frac{1}{R}=G \\
\mathrm{C} & \mathbf{Y}=s C=j \omega C=j B_{C}=\omega C \angle 90 \\
\mathrm{~L} & \mathbf{Y}=\frac{1}{s L}=\frac{1}{j \omega L}=\frac{-1}{\omega L} j=j B_{L}=\frac{1}{\omega L} \angle-90
\end{array}
$$

$$
B_{C}=\omega C \quad B_{L}=-\frac{1}{\omega L}
$$

\rightarrow Positive susceptance \rightarrow circuit is said to be capacitive.
\rightarrow Negative susceptance \rightarrow circuit is said to be inductive.

KCL/KVL for Phasor Circuits

$\rightarrow \mathrm{KCL}$ in time domain:

$$
i_{1}(t)+i_{2}(t)+i_{3}(t)+i_{4}(t)+i_{5}(t)+\mathrm{K}=0
$$

\rightarrow Complex exponential input:

$$
\begin{aligned}
& i_{1}(t)+i_{2}(t)+i_{3}(t)+i_{4}(t)+i_{5}(t)+\mathrm{K}=0 \\
& \mathbf{I}_{1} e^{j \omega t}+\mathbf{I}_{2} e^{j \omega t}+\mathbf{I}_{3} e^{j \omega t}+\mathbf{I}_{4} e^{j \omega t}+\mathbf{I}_{5} e^{j \omega t}+\mathrm{K}=0
\end{aligned}
$$

$\rightarrow \mathrm{KCL}$ for phasors

$$
\mathbf{I}_{1}+\mathbf{I}_{2}+\mathbf{I}_{3}+\mathbf{I}_{4}+\mathbf{I}_{5}+\mathbf{K}=0
$$

\rightarrow We can use the same approach to prove KVL for phasor circuits.

Series and Parallel Combinations

Frequency Domain

$$
\left.\begin{array}{c}
\mathbf{V}=\mathbf{Z I} \\
\mathbf{I}=\mathbf{Y} \mathbf{V}
\end{array}\right\} \Longleftrightarrow\left\{\begin{array}{l}
v=R i \\
i=G v
\end{array}\right.
$$

\rightarrow Phasor terminal relationships are linear and in the same form as in the case of dc circuits (except in this case we have complex numbers).
$\rightarrow \mathrm{KCL}$ and KVL are valid for phasor circuits.
\rightarrow We can derive network theorems that are similar to the dc case.
\rightarrow Example: Element series and parallel combinations

Parallel Combinations

$\mathbf{Y}_{p a r}=\mathbf{Y}_{1}+\mathbf{Y}_{2}+\mathbf{Y}_{3}+\ldots$

$$
\begin{aligned}
& G_{p a r}=G_{1}+G_{2}+G_{3}+\ldots \\
& \frac{1}{R_{p a r}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\ldots
\end{aligned}
$$

Series Combinations

$\mathbf{Z}_{\text {series }}=\mathbf{Z}_{1}+\mathbf{Z}_{2}+\mathbf{Z}_{3}+\ldots$
$\frac{1}{\mathbf{Y}_{\text {series }}}=\frac{1}{\mathbf{Y}_{1}}+\frac{1}{\mathbf{Y}_{2}}+\frac{1}{\mathbf{Y}_{3}}+\ldots$

$$
\begin{aligned}
& R_{\text {series }}=R_{1}+R_{2}+R_{3}+\ldots \\
& \frac{1}{G_{\text {series }}}=\frac{1}{G_{1}}+\frac{1}{G_{2}}+\frac{1}{G_{3}}+\ldots
\end{aligned}
$$

Example 1

Calculate the equivalent impedance at 60 Hz and 400 Hz .
\rightarrow At $60 \mathrm{~Hz}, \quad \omega=2 \pi f=120 \pi$

$$
\begin{aligned}
& \mathbf{Z}_{e q}=25 \Omega+j\left(120 \pi \times 20 \times 10^{-3}\right)+\frac{1}{j\left(120 \pi \times 50 \times 10^{-6}\right)} \\
& \mathbf{Z}_{e q}=25 \Omega+j 7.54-j 53.05=25-j 45.51 \\
& \quad \rightarrow \text { Capacitive }
\end{aligned}
$$

\rightarrow At $400 \mathrm{~Hz}, \quad \omega=2 \pi f=800 \pi$

$$
\begin{aligned}
\mathbf{Z}_{e q}= & 25 \Omega+j\left(800 \pi \times 20 \times 10^{-3}\right)+\frac{1}{j\left(800 \pi \times 50 \times 10^{-6}\right)} \\
\mathbf{Z}_{e q}= & 25 \Omega+j 50.27-j 7.96=25+j 42.31 \\
& \rightarrow \text { Inductive }
\end{aligned}
$$

Example 2

At $60 \mathrm{~Hz}, \quad \mathbf{I}_{\mathrm{s}}=0.5 \angle-22.98^{\circ}$
Calculate $\mathbf{V}_{\mathbf{s}}$

$$
\mathbf{Z}_{R}=20 \Omega
$$

$\mathbf{Z}_{L}=j \omega L=j(2 \pi \times 60) \times\left(40 \times 10^{-3}\right)=j 15.08 \Omega$

$$
\mathbf{Z}_{e q}=\frac{\mathbf{Z}_{R} \mathbf{Z}_{L}}{\mathbf{Z}_{R}+\mathbf{Z}_{L}}=\frac{(20)(j 15.08)}{20+j 15.08}=7.25+j 9.61 \Omega=12.04 \angle 52.98
$$

$$
\mathbf{V}=\mathbf{Z}_{e q} \mathbf{I}=\left(0.5 \angle-22.98^{\circ}\right)\left(12.04 \angle 52.98^{\circ}\right)=6.02 \angle 30^{\circ}
$$

$$
v(t)=6.02 \cos \left(120 \pi t+30^{\circ}\right) \text { volts }
$$

Example 3

Find an equivalent circuit for the impedance: $\mathbf{Z}=10 \angle 30^{\circ}$
\rightarrow Option \#1: $\mathbf{Z}=10 \angle 30^{\circ}=8.66+j 5 \Omega$

\rightarrow Positive reactance \rightarrow inductive

Example 3

Find an equivalent circuit for the impedance: $\mathbf{Z}=10 \angle 30^{\circ}$
\rightarrow Option \#2: $\quad \mathbf{Z}=10 \angle 30^{\circ}=8.66+j 5 \Omega$
$\mathbf{Y}=\frac{1}{10 \angle 30^{\circ}}=0.1 \angle-30^{\circ}=0.0866-j 0.05$
\rightarrow Negative susceptance \rightarrow inductive
Y circuit

Example 3

Find an equivalent circuit for the impedance: $\mathbf{Z}=10 \angle 30^{\circ}$
\rightarrow Option \#2: $\quad \mathbf{Z}=10 \angle 30^{\circ}=8.66+j 5 \Omega$

$$
\mathbf{Y}=\frac{1}{10 \angle 30^{\circ}}=0.1 \angle-30^{\circ}=0.0866-j 0.05
$$

equivalent circuits

Negative susceptance \rightarrow inductive Positive reactance \rightarrow inductive
Y circuit

Z circuit

Example 4

$$
\mathbf{Z}_{e q}=1 \Omega\|(-2 j \Omega)+[4 \Omega+j 2 \Omega+j 4 \Omega \|(-j 2 \Omega)]\|(2 \Omega+j 6 \Omega-j 2 \Omega)
$$

$$
\mathbf{Z}_{e q}=3.8+j 0.6 \Omega
$$

AC Steady State Analysis

Basis: $\quad K C L, K V L$ and $\mathbf{V}=\mathbf{Z I}$ can be used to solve linear, ac steady-state circuit problems.
\rightarrow Consider the network theorems (and other linear circuit analysis techniques) developed for resistive dc circuits for ac steady-state analysis of RLC circuits.
\rightarrow It may be confirmed that each time-domain method is valid for frequency domain analysis. (Derive equivalent frequency domain results based on the phasor form of $\mathrm{KCL}, \mathrm{KVL}$ and $\mathbf{V}=\mathbf{I Z}$.)
\rightarrow We will consider a selection of illustrative ac steady-state (phasor) circuit analysis examples.

