ECSE 210: Circuit Analysis Lecture \#11:

Complex Sources, Phasors

Complex Exponential

Maclaurin's expansion of the exponential function is:

$$
e^{x}=1+x+\left(\frac{x^{2}}{2!}\right)+\ldots+\left(\frac{x^{n}}{n!}\right)+\ldots
$$

Substitute the complex number $j \theta$ for x :

$$
\begin{aligned}
& e^{j \theta}=1+j \theta+\left(\frac{(j \theta)^{2}}{2!}\right)+\left(\frac{(j \theta)^{3}}{3!}\right)+\ldots+\left(\frac{(j \theta)^{n}}{n!}\right)+\ldots \\
& e^{j \theta}=\underbrace{\left[1-\left(\frac{\theta^{2}}{2!}\right)+\left(\frac{\theta^{4}}{4!}\right)-\left(\frac{\theta^{6}}{6!}\right)+\ldots\right]}_{\cos (\theta)}+j \underbrace{\left[\theta-\left(\frac{\theta^{3}}{3!}\right)+\left(\frac{\theta^{5}}{5!}\right)-\left(\frac{\theta^{7}}{7!}\right)+\ldots\right]}_{\sin (\theta)}
\end{aligned}
$$

Complex Exponential

\rightarrow Euler's theorem: $\quad e^{j \theta}=\cos (\theta)+j \sin (\theta)$
\rightarrow Similarly:

$$
e^{-j \theta}=\cos (\theta)-j \sin (\theta)
$$

$$
\begin{aligned}
& e^{j \theta}+e^{-j \theta}=2 \cos (\theta)=2 \operatorname{Re}\left[e^{j \theta}\right] \\
& e^{j \theta}-e^{-j \theta}=2 \sin (\theta)=2 \operatorname{Im}\left[e^{j \theta}\right]
\end{aligned}
$$

\rightarrow We can represent a sinusoidal time varying function as the real part of a complex exponential:

$$
x(t)=\operatorname{Re}\left[X_{m} e^{j(\omega t+\theta)}\right]=X_{m} \cos (\omega t+\theta)
$$

\rightarrow Note that: $\quad X_{m} e^{j(\omega t+\theta)}=X_{m} e^{j \theta} e^{j \omega t}$

Complex Exponential

What is the difference between the following two equations?

$$
\begin{aligned}
& X(t)=X_{m} e^{j(\omega t+\theta)} \quad \square \text { Complex exponential function } \\
& x(t)=\operatorname{Re}\left[X_{m} e^{j(\omega t+\theta)}\right]=X_{m} \cos (\omega t+\theta)
\end{aligned}
$$

Phasor:
Magnitude \& Phase
\rightarrow Note that: $X_{m} e^{j(\omega t+\theta)}=X_{m} e^{j \theta} e^{j \omega t}$

Phasor Example

\rightarrow Instead of solving this circuit, solve the same circuit but with a complex exponential input:

$$
v(t)=\mathbf{V} e^{j \omega t}
$$

Is this a physically realizable function?
KVL:

$$
i R+L \frac{d i}{d t}=\mathbf{V} e^{j \omega t} \quad \text { Exponential forcing function }
$$ $\mathbf{V}=V_{m} \angle 0$ Phasor magnitude \& phase

\rightarrow Steady state response has the form: $\quad i(t)=\mathbf{I} e^{j \omega t}$

Phasor Example

\rightarrow Steady state response has the form: $i(t)=\mathbf{I} e^{j \omega t}$
Substitute into d.e. $\quad \square R \mathbf{I} e^{j \omega t}+j \omega L \mathbf{I} e^{j \omega t}=\mathbf{V} e^{j \omega t}$
\rightarrow Divide by $e^{j \omega t}$
$R \mathbf{I}+j \omega L \mathbf{I}=\mathbf{V}$

$$
\mathbf{I}=\frac{\mathbf{V}}{R+j \omega L}=I_{m} \angle \phi=\frac{V_{m}}{\sqrt{R^{2}+\omega^{2} L^{2}}} \angle-\tan ^{-1}\left(\frac{\omega L}{R}\right)
$$

Phasor Example

$$
\mathbf{I}=\frac{\mathbf{V}}{R+j \omega L}=I_{m} \angle \phi=\frac{V_{m}}{\sqrt{R^{2}+\omega^{2} L^{2}}} \angle-\tan ^{-1}\left(\frac{\omega L}{R}\right) \quad \begin{aligned}
& \begin{array}{l}
\text { Frequency } \\
\text { domain }
\end{array}
\end{aligned}
$$

$$
i(t)=\mathbf{I} e^{j \omega t}=\frac{V_{m}}{\sqrt{R^{2}+\omega^{2} L^{2}}} e^{-j \tan ^{-1}\left(\frac{\omega L}{R}\right)} \quad e^{j \omega t} \quad \begin{aligned}
& \text { Time } \\
& \text { domain }
\end{aligned}
$$

 function?
\rightarrow Try the same circuit, but now with the input $\quad v(t)=\mathbf{V} e^{-j \omega t}$

Phasor Example

$$
\text { If } \quad v(t)=\mathbf{V} e^{j \omega t}
$$

$$
i(t)=\mathbf{I} e^{j \omega t}=\frac{V_{m}}{\sqrt{R^{2}+\omega^{2} L^{2}}} e^{-j \tan ^{-1}\left(\frac{\omega L}{R}\right)} \quad e^{j \omega t}
$$

$$
\begin{equation*}
\text { If } v(t)=\mathbf{V} e^{-j \omega t} \tag{1}
\end{equation*}
$$

$$
\begin{align*}
& \downarrow \\
& i(t)=\mathbf{I}^{*} e^{-j \omega t}=\frac{V_{m}}{\sqrt{R^{2}+\omega^{2} L^{2}}} e^{j \tan ^{-1}\left(\frac{\omega L}{R}\right)} e^{-j \omega t} \tag{1}
\end{align*}
$$

Phasor Example

\rightarrow Use superposition to find the total response:

Input: $\longrightarrow \mathbf{1 / 2}(\hat{z}+(1))=\frac{1}{2}\left(V_{m} e^{j \omega t}+V_{m} e^{-j \omega t}\right)=V_{m} \cos (\omega t)$

Output:

$$
\begin{aligned}
\mathbf{1 / 2 (}(\mathrm{L})+(\mathcal{L})= & \frac{1}{2} \frac{V_{m}}{\sqrt{R^{2}+\omega^{2} L^{2}}}\left(e^{j\left(\omega t-\tan ^{-1}\left(\frac{\omega L}{R}\right)\right)}+e^{-j\left(\omega t-\tan ^{-1}\left(\frac{\omega L}{R}\right)\right)}\right) \\
& =\frac{V_{m}}{\sqrt{R^{2}+\omega^{2} L^{2}}} \cos \left(\omega t-\tan ^{-1}\left(\frac{\omega L}{R}\right)\right)
\end{aligned}
$$

Same as before.

Phasor Example

\rightarrow Therefore:

If input:

$$
v(t)=V_{m} \cos (\omega t) \quad \text { SINUSOID }
$$

Then output: $i(t)=\frac{V_{m}}{\sqrt{R^{2}+\omega^{2} L^{2}}} \cos \left(\omega t-\tan ^{-1}\left(\frac{\omega L}{R}\right)\right)$

Note that:

$$
\begin{aligned}
v(t) & =\operatorname{Re}\left[\mathbf{V} e^{j \omega t}\right] \\
i(t) & =\operatorname{Re}\left[\mathbf{I} e^{j \omega t}\right]
\end{aligned}
$$

Summary

Time domain input: $v(t)=V_{m} \cos (\omega t+\theta)$
Find complex exponential forcing function $v(t)$ such that: $\quad \operatorname{Re}\left[\mathbf{V} e^{j \omega t}\right]=v(t)$

Complex forcing function: $\quad v(t)=V_{m} e^{j(\omega t+\theta)}=\left(V_{m} \angle \theta\right) e^{j \omega t}=\mathbf{V} e^{j \omega t}$

Find the response $i(t)$ to $v(t)$

Time domain response due to $v(t)$ is:

$$
i(t)=\operatorname{Re}\left[\mathbf{I} e^{j \omega t}\right]
$$

Summary

Find the phasor of a time domain signal:

$$
v(t)=V_{m} \cos (\omega t+\theta)
$$

- Complex exponential function:

$$
\left.v(t)=V_{m} e^{j(\omega t+\theta)}=\left[V_{m} e^{j \theta}\right]\right]^{j \omega t}=\mathbf{V} e^{j \omega t}
$$

\mathbf{V} is the phasor of $v(t)=V_{m} \cos (\omega t+\theta)$

$$
\begin{aligned}
\mathbf{V} & =V_{m} \angle \theta \quad \text { PHASOR } \\
v(t) & =\operatorname{Re}\left[\mathbf{V} e^{j \omega t}\right]
\end{aligned}
$$

$\rightarrow \quad$ Note: \mathbf{V} does not include the frequency term $e^{j \omega t}$. The frequency of the steady state response is the same as that of the input in a linear circuit.

Key Points

1. Solving systems using phasors is called phasor analysis, or frequency domain analysis.
2. Differential equations driven by sinusoidal forcing functions in the time domain are converted to complex algebraic equations in the frequency domain.
3. $\mathbf{v}(\mathrm{t})$ represents a voltage in the time domain. The phasor V represents the voltage in the frequency domain.
4. The phasor V contains only the magnitude and phase information of $v(t)$. The frequency ω is implicit to the representation.
5. It would be nice to be able to write the circuit equations directly in the phasor/frequency domain.

Circuit Elements in the Frequency Domain

The resistor \mathbf{R}

\rightarrow Time domain:

$$
v(t)=R i(t)
$$

\rightarrow Complex exponential forcing
 function:

$$
\begin{gathered}
v(t)=V_{m} e^{j\left(\omega t+\theta_{v}\right)}=\left[V_{m} \angle \theta_{v}\right] e^{j \omega t}=\mathbf{V} e^{j \omega t} \\
i(t)=I_{m} e^{j\left(\omega t+\theta_{i}\right)}=\left[I_{m} \angle \theta_{i}\right] e^{j \omega t}=\mathbf{I} e^{j \omega t} \\
v(t)=\operatorname{Ri}(t) \quad \longrightarrow \mathbf{V} e^{j \omega t}=R \mathbf{I} e^{j \omega t}
\end{gathered}
$$

\rightarrow Phasors: $\mathbf{V}=R \mathbf{I}$

Circuit Elements in the Frequency Domain

The resistor \mathbf{R}

\rightarrow Phasors: V $=$ RI

This terminal relation for the phasor voltage and current in a resistor implies that the voltage and current are in phase:

$$
\begin{aligned}
& \mathbf{V}=R \mathbf{I} \\
& V_{m} \angle \theta_{v}=R I_{m} \angle \theta_{i} \longrightarrow \theta_{v}=\theta_{i}
\end{aligned}
$$

Circuit Elements in the Frequency Domain

Phasor diagram:
\rightarrow Plot complex numbers as vectors

\rightarrow Voltage and current are in phase

Circuit Elements in the Frequency Domain

The inductor L

\rightarrow Time domain: $v(t)=L \frac{d i}{d t}$
\rightarrow Complex exponential forcing
 function:

$$
\begin{gathered}
v(t)=V_{m} e^{j\left(\omega t+\theta_{v}\right)}=\left[V_{m} \angle \theta_{v}\right] e^{j \omega t}=\mathbf{V} e^{j \omega t} \\
i(t)=I_{m} e^{j\left(\omega t+\theta_{i}\right)}=\left[I_{m} \angle \theta_{i}\right] e^{j \omega t}=\mathbf{I} e^{j \omega t} \\
v(t)=L \frac{d i(t)}{d t} \longrightarrow \mathbf{V} e^{j \omega t}=j \omega L \mathbf{I} e^{j \omega t}
\end{gathered}
$$

\rightarrow Phasors: $\mathbf{V}=j \omega L \mathbf{I}$

Circuit Elements in the Frequency Domain

The inductor L

\rightarrow Phasors: $\quad \mathbf{V}=j \omega L \mathbf{I}$

$$
\begin{aligned}
& V_{m} \angle \theta_{v}=j \omega L I_{m} \angle \theta_{i} \\
& j=1 \angle 90^{\circ}
\end{aligned}
$$

$$
V_{m} \angle \theta_{v}=\omega L I_{m} \angle \theta_{i}+90^{\circ}
$$

$$
\theta_{v}=\theta_{i}+90^{\circ} \quad \theta_{v}-\theta_{i}=+90^{\circ}
$$

$\rightarrow v(t)$ leads $i(t)$ by 90°

Circuit Elements in the Frequency Domain

Phasor diagram:
\rightarrow Plot complex numbers as vectors

\rightarrow Voltage leads current by 90 degrees.

Circuit Elements in the Frequency Domain

The capacitor C

\rightarrow Time domain: $i(t)=C \frac{d v}{d t}$
\rightarrow Complex exponential forcing

$$
\mathbf{V}
$$

function:

$$
\begin{aligned}
& v(t)=V_{m} e^{j\left(\omega t+\theta_{v}\right)}=\left[V_{m} \angle \theta_{v}\right] e^{j \omega t}=\mathbf{V} e^{i \omega t} \\
& i(t)=I_{m} e^{j\left(\omega t+\theta_{i}\right)}=\left[I_{m} \angle \theta_{i}\right] e^{j \omega t}=\mathbf{I} e^{j \omega t} \\
& i(t)=C \frac{d v(t)}{d t} \longrightarrow \mathbf{I} e^{j \omega t}=j \omega C \mathbf{V} e^{j \omega t} \\
& \rightarrow \text { Phasors: } \mathbf{I}=j \omega C \mathbf{V}
\end{aligned}
$$

Circuit Elements in the Frequency Domain

The capacitor C

\rightarrow Phasors: $\quad \mathbf{I}=j \omega C \mathbf{V}$

$$
\begin{gathered}
I_{m} \angle \theta_{i}=j \omega C V_{m} \angle \theta_{v} \\
I_{m} \angle \theta_{i}=\omega C V_{m} \angle \theta_{v}+90^{\circ}
\end{gathered}
$$

$$
\theta_{i}=\theta_{v}+90^{\circ} \quad \theta_{v}-\theta_{i}=-90^{\circ}
$$

$\rightarrow v(t)$ lags $i(t)$ by 90°

Circuit Elements in the Frequency Domain

Phasor diagram:
\rightarrow Plot complex numbers as vectors

Circuit Elements: Summary

Resistor: $\quad \mathbf{V}=R \mathbf{I}$

Inductor: $\quad \mathbf{V}=j \omega L \mathbf{I}$

Capacitor

$$
\mathbf{I}=j \omega C \mathbf{V}
$$

or

$$
\mathbf{V}=\frac{1}{j \omega C} \mathbf{I}
$$

In general: $\mathbf{V}=\mathbf{Z I}$
where:

$$
\left.\begin{array}{ll}
Z=R & \rightarrow \text { Resistor } \\
Z=j \omega L & \rightarrow \text { Inductor } \\
Z=\frac{1}{i \omega r} & \rightarrow \text { Capacitor }
\end{array}\right\} \begin{aligned}
& \mathrm{Z} \text { in ac circuits is } \\
& \text { analogous to } \mathrm{R} \text { in dc } \\
& \text { circuits. It is a complex } \\
& \text { quantity but NOT a phasor! }
\end{aligned}
$$

