ECSE 210: Circuit Analysis Lecture \#10:

\rightarrow Second Order Circuits Conclusion
\rightarrow Sinusoids
\rightarrow Circuits with Sinusoidal Forcing Functions

RLC Circuits: Final Remarks

1. RLC circuit analysis leads to second order ODEs.
2. RLC circuit response is determined by the roots of the characteristic equation of the governing ODE:

$$
s^{2}+2 \alpha s+\omega_{o}^{2}=0
$$

where: α is the exponential damping coefficient and ω_{0} is the undamped resonant frequency
3. Real and unequal roots $\left(\alpha>\omega_{0}\right) \rightarrow$ overdamped; Complex \&unequal roots $\left(\alpha<\omega_{0}\right) \rightarrow$ underdamped; Real and equal roots $\left(\alpha=\omega_{0}\right) \rightarrow$ critically damped.
4. The general response/solution of even very simple RLC circuits can be very difficult to determine in the time domain.
\rightarrow Use transform methods which simplify the analysis.

Sinusoids

The sinusoidal forcing function is a very important electric circuit excitation:

1. It is the dominant waveform in the electric power industry.
2. All periodic electrical signals can be represented by a sum of sinusoids (Fourier analysis).
\rightarrow We will study the steady-state forced response of circuits sourced by sinusoidal driving functions. (ac steady-state analysis)

Sinusoids

$A \sin (\theta)=A \sin (\theta+2 \pi)$
$A \sin (\theta)=A \sin (\theta+2 k \pi)$
k is an integer

Sinusoids $\theta \rightarrow \omega t$

Period T of a sine wave: $x(t)=x(t+T)$
$A \sin (\omega t)=A \sin (\omega(t+T))=A \sin (\omega t+\omega T)$

$$
\omega T=2 \pi \quad \Longrightarrow \quad T=\frac{2 \pi}{\omega}
$$

Sinusoids

- Period of $x(\theta)=\sin (\theta)$ is 2π radians
- Period of $x(t)=\sin (\omega t)$ is $T=\frac{2 \pi}{\omega}$ seconds
\rightarrow One cycle takes T seconds.
\rightarrow How many cycles per second?

$$
f=\frac{1}{T} \quad \text { Hertz (Hz) or cycles/second }
$$

Note: For frequency f in $\mathrm{Hertz}(\mathrm{Hz})$, period T in seconds (s) and angular frequency ω in radians/second (rd/s) we have:

$$
T=\frac{2 \pi}{\omega} \quad f=\frac{1}{T} \quad \omega=2 \pi f
$$

Generalized Sinusoids

Phase angle

Convention
$A \sin (\omega t) \quad$ lags wave $A \sin (\omega t+\theta)$ by θ radians

Phase Angle

By convention:

$$
\begin{aligned}
& x_{1}(t)=A_{1} \sin \left(\omega t+\theta_{1}\right) \\
& x_{2}(t)=A_{2} \sin \left(\omega t+\theta_{2}\right)
\end{aligned}
$$

x_{1} leads x_{2} by $\theta_{1}-\theta_{2}$ radians, or
x_{2} lags x_{1} by $\theta_{1}-\theta_{2}$ radians
Also: $\theta_{1}=\theta_{2} \rightarrow x_{1}$ and x_{2} are "in phase" $\theta_{1} \neq \theta_{2} \rightarrow x_{1}$ and x_{2} are "out of phase"
\rightarrow We can only compare phase angles if x_{1} and x_{2} have the same angular frequency ω.
\rightarrow The phase angle is often expressed in degrees.
\rightarrow When comparing phase angles, express both functions as either sine or cosine with positive amplitude.

Trigonometric Identities (Confirm!)

$$
\begin{aligned}
& \cos (\omega t)=\sin \left(\omega t+90^{\circ}\right)=-\cos \left(\omega t \pm 180^{\circ}\right) \\
& \sin (\omega t)=\cos \left(\omega t-90^{\circ}\right)=-\sin \left(\omega t \pm 180^{\circ}\right) \\
& \sin (\alpha+\beta)=\sin (\alpha) \cos (\beta)+\cos (\alpha) \sin (\beta) \\
& \sin (\alpha-\beta)=\sin (\alpha) \cos (\beta)-\cos (\alpha) \sin (\beta) \\
& \cos (\alpha+\beta)=\cos (\alpha) \cos (\beta)-\sin (\alpha) \sin (\beta) \\
& \cos (\alpha-\beta)=\cos (\alpha) \cos (\beta)+\sin (\alpha) \sin (\beta)
\end{aligned}
$$

Sum of Sine and Cosine

Since $\quad \sin (\alpha+\beta)=\sin (\alpha) \cos (\beta)+\cos (\alpha) \sin (\beta)$
Then $\quad x(t)=A \sin (\omega t+\theta)$

$$
\begin{aligned}
& =\underbrace{A \cos (\theta)}_{B_{1}} \sin (\omega t)+\underbrace{A \sin (\theta)}_{B_{2}} \cos (\omega t) \\
& =B_{1} \sin (\omega t)+B_{2} \cos (\omega t)
\end{aligned}
$$

$$
\begin{aligned}
& B_{1}^{2}+B_{2}^{2}=A^{2}\left(\cos ^{2}(\theta)+\sin ^{2}(\theta)\right)=A^{2} \Rightarrow A=\sqrt{B_{1}^{2}+B_{2}^{2}} \\
& \frac{B_{2}}{B_{1}}=\frac{\sin (\theta)}{\cos (\theta)}=\tan (\theta) \quad \Rightarrow \theta=\tan ^{-1}\left(\frac{B_{2}}{B_{1}}\right)
\end{aligned}
$$

Example

$v_{1}(t)=12 \sin \left(377 t+60^{\circ}\right)$
$\left.v_{2}(t)=-6 \cos \left(377 t+30^{\circ}\right)\right\}$
Find frequency and phase angles

Choose to express both as sine with positive amplitude

$$
v_{1}(t)=12 \sin \left(377 t+60^{\circ}\right)
$$

$$
v_{2}(t)=-6 \cos \left(377 t+30^{\circ}\right)=6 \cos \left(377 t+210^{\circ}\right)
$$

$$
=6 \sin \left(377 t+300^{\circ}\right)
$$

Phase difference is $60-300=-240^{\circ}$
$\rightarrow \mathrm{v}_{1}$ leads v_{2} by 120° (Why?)
Also: $f=\frac{\omega}{2 \pi}=\frac{377}{2 \pi}=60 \mathrm{~Hz}$

Sinusoidal Forcing Function

Recall the form of the natural response of a linear second order circuit:

$$
\begin{array}{ll}
x_{n}(t)=C_{1} e^{\lambda_{1} t}+C_{2} e^{\lambda_{2} t} & \rightarrow \text { Overdamped } \\
x_{n}(t)=C_{1} e^{-\alpha t}+C_{2} t e^{-\alpha t} & \rightarrow \text { Critically dampe } \\
x_{n}(t)=e^{-\alpha t}\left[B_{1} \cos \omega_{d} t+B_{2} \sin \omega_{d} t\right] & \rightarrow \text { Underdamped }
\end{array}
$$

At $t=\infty$ the natural response goes to zero and we are left with the forced response.

Sinusoidal Forcing Function

Recall the form of the forced response of a linear second order circuit:

For a sinusoidal forcing function $\sin (\omega t)$ the forced response has the form:

$$
A \sin (\omega t)+B \cos (\omega t)
$$

- Therefore, in the steady-state (after all transients have died out):

A linear second order circuit with a sinusoidal input will have sinusoidal branch voltages and currents at the same frequency as the input.

Sinusoidal Forcing Function

We can generalize the above conclusion for any linear circuit:

> In the steady-state (after all transients have died out):
> A linear circuit with a sinusoidal input will have sinusoidal branch voltages and currents at the same frequency as the input.

For example, a circuit in an input of the form:

$$
A \sin (\omega t+\theta)
$$

will have an output (a solution) in the steady state in the form:

$$
B \sin (\omega t+\phi) \text { Need to determine two parameters. }
$$

Example

KVL

$$
L \frac{d i}{d t}+R i=V_{m} \cos (\omega t)
$$

Assume steady-state (ss):

$$
\begin{aligned}
& i(t)=A \cos (\omega t+\phi) \\
& i(t)=A \cos (\phi) \cos (\omega t)-A \sin (\phi) \sin (\omega t) \\
& i(t)=A_{1} \cos (\omega t)+A_{2} \sin (\omega t) \longrightarrow \text { Substitute into ODE }
\end{aligned}
$$

$$
L \frac{d}{d t}\left(A_{1} \cos (\omega t)+A_{2} \sin (\omega t)\right)+R\left(A_{1} \cos (\omega t)+A_{2} \sin (\omega t)\right)=V_{m} \cos (\omega t)
$$

Example

$$
L \frac{d}{d t}\left(A_{1} \cos (\omega t)+A_{2} \sin (\omega t)\right)+R\left(A_{1} \cos (\omega t)+A_{2} \sin (\omega t)\right)=V_{m} \cos (\omega t)
$$

$$
-L \omega A_{1} \sin (\omega t)+L \omega A_{2} \cos (\omega t)+R A_{1} \cos (\omega t)+R A_{2} \sin (\omega t)=V_{m} \cos (\omega t)
$$

$$
\left\{\begin{array}{r}
-L \omega A_{1}+R A_{2}=0 \\
L \omega A_{2}+R A_{1}=V_{m}
\end{array}\right\rangle
$$

$$
\begin{aligned}
& A_{1}=\frac{R V_{m}}{R^{2}+\omega^{2} L^{2}} \\
& A_{2}=\frac{\omega L V_{m}}{R^{2}+\omega^{2} L^{2}}
\end{aligned}
$$

$$
i(t)=\frac{R V_{m}}{R^{2}+\omega^{2} L^{2}} \cos (\omega t)+\frac{\omega L V_{m}}{R^{2}+\omega^{2} L^{2}} \sin (\omega t)
$$

Example

$$
i(t)=\frac{R V_{m}}{R^{2}+\omega^{2} L^{2}} \cos (\omega t)+\frac{\omega L V_{m}}{R^{2}+\omega^{2} L^{2}} \sin (\omega t)
$$

$$
i(t)=A \cos (\omega t+\phi)
$$

Convert to simpler form
$i(t)=A \cos (\phi) \cos (\omega t)-A \sin (\phi) \sin (\omega t) \quad$ Compare to above

$$
\begin{aligned}
& \tan (\phi)=\frac{A \sin (\phi)}{A \cos (\phi)}=-\frac{\omega L}{R} \quad \square \phi=-\tan ^{-1}\left(\frac{\omega L}{R}\right) \\
& A^{2}=\frac{R^{2} V_{m}^{2}}{\left(R^{2}+\omega^{2} L^{2}\right)^{2}}+\frac{(\omega L)^{2} V_{m}^{2}}{\left(R^{2}+\omega^{2} L^{2}\right)^{2}}=\frac{V_{m}^{2}}{R^{2}+\omega^{2} L^{2}} \\
& A=\frac{V_{m}}{\sqrt{R^{2}+\omega^{2} L^{2}}}
\end{aligned}
$$

