ECSE 210: Circuit Analysis

Lecture #1: Introduction

Linear Electric Circuits

• A linear circuit satisfies the properties of superposition and homogeneity.

Example:

Circuit with input i and output v

Superposition:

$$i_1 \longrightarrow v_1 \\ i_2 \longrightarrow v_2$$

$$i_1 + i_2 \longrightarrow v_1 + v_2$$

Homogeneity:

$$i \longrightarrow v \longrightarrow ki \longrightarrow kv$$

Circuit Analysis

- Design Creation of a Circuit
- Analysis Evaluation of a Circuit

Electric Circuit:

An interconnection of electrical elements linked together in a closed path so that electric current may flow.

Analogy: water flow

Linear Electric Circuits

• Example of a linear element: The resistor

$$\begin{array}{ccc}
+ & v \\
\hline
- & \\
\hline
i & \\
\end{array}$$

$$v = iR$$

Superposition:

• Homogeneity: $i \longrightarrow v = iR \longrightarrow ki \longrightarrow kiR = kv$

Linear Electric Circuits

• Example of a nonlinear element:

Superposition:

$$\left.\begin{array}{ccc}
 & i_1 \longrightarrow v_1 = e^{i_1} \\
 & i_2 \longrightarrow v_2 = e^{i_2}
\end{array}\right\} \longrightarrow \begin{array}{c}
 & i_1 + i_2 \longrightarrow v = e^{i_1 + i_2} \\
 & \neq e^{i_1} + e^{i_2}
\end{array}$$

Homogeneity: $i \rightarrow v = e^{i} \rightarrow ki \rightarrow e^{ki} \neq ke^{i}$

Circuit Analysis – Basic steps

Given Circuit (Design)

- 1. Identify element models (e.g., V=IR for resistor).
- 2. Define analysis variables (e.g., currents, voltages).
- 3. Assemble circuit equations (e.g., KCL, KVL).
- 4. Solve circuit equations (e.g., matrix methods, computer...).
- 5. Evaluate circuit performance (e.g., power delivery, dynamic response, frequency response)

Interpretation of results

Linear Electric Circuits

Example of superposition

- Remove i₂ and calculate v
- Remove i_1 and calculate v
- · Add the two solutions

Circuit Analysis

Note: Circuit analysis yields the "physical" performance of *idealized* electric circuits, without concern for the actual systems represented by the circuits.

- Circuit models are used to <u>approximate</u> real systems;
- Circuit analysis determines the performance of circuit *models*.
- Electrical engineers use circuits to <u>estimate</u> the performance of real systems and devices.

Question: Do circuit models provide the exact performance of real electric circuits?

Some SI Units

Quantity	Unit	Symbol
length	Meter	m
time	second	s
charge	Coulomb	С
current	Ampere	Α
voltage	Volt	V
resistance	Ohm	Ω
capacitance	Farad	F
inductance	Henry	Н
energy	Joule	J
power	Watt	W

Standard SI prefixes

Prefix	Symbol	Multiplier
pico	р	10-12
nano	n	10 ⁻⁹
micro	μ	10 ⁻⁶
milli	m	10 ⁻³
kilo	k	10 ⁺³
mega	М	10 ⁺⁶
giga	G	10 ⁺⁹
tera	Т	10+12

Standard SI prefixes

Examples:

0.0015 Amperes should be written 1.5 mA 3,500,000 Watts should be written 3.5 MW 0.0012 mA should be written as $1.2 \mu A$

Concept of significant figures vs. decimal places

Standard SI prefixes

Examples:

0.0015 Amperes should be written 1.5 mA 3,500,000 Watts should be written 3.5 MW 0.0012 mA should be written as $1.2 \mu A$

Concept of significant figures vs. decimal places

More Basics - Current

Circuit analysis <u>current variables</u> must be defined with prescribed <u>directions</u>.

Does it matter which direction we assign to the current?

More Basics - Current

There are two types of current:

- Time-invariant (stationary), commonly known as *direct current* (dc).
- Time-varying, e.g, the sinusoidal alternating current (ac)

More Basics - Current

Current variable need not correspond to *physical* current flow.

Voltage or Potential

Charge in motion Energy Transfer

- The <u>voltage between two points</u> in a circuit is defined as the difference in energy level of a positive unit charge located at each of the two points.
- In other words, the voltage between two points is the energy required to move a positive unit charge between the two points.
- Circuit analysis voltage variables must be defined with prescribed orientation to identify the point at higher potential.
- The "+" and "-" signs are used: "+" marks the point of higher potential and "-" marks the point of lower potential.

Voltage or Potential

Does it make a difference which orientation we assign to a voltage variable?

Resist mixing variables and values.

Be consistent.

Power

Power flow in an electric circuit is defined by the "rate of movement of energy" in the circuit.

$$P = VI$$
 or $p(t) = v(t)i(t)$

with the passive sign convention (psc) assumed.

Under these conditions (psc), if p(t) is <u>positive</u> then power is <u>absorbed</u> by the element; if p(t) is <u>negative</u>, then power is <u>supplied</u> by the element.

Energy Transfer

By definition (passive sign convention)

- Positive current into positive terminal → energy absorbed.
- Positive current into negative terminal → energy supplied.

Question: Where does the absorbed (supplied) energy come from (go to)?

Circuit Elements

- In circuit analysis, physical circuit elements are represented by abstract mathematical models which describe their behavior.
- When we refer to a circuit element we actually mean the mathematical model that describes its behavior.
- In this course, all the circuit elements are terminal devices, completely characterized by the current through the element and/or the voltage across it.

Passive vs. Active Elements

Two types of elements: **active** and **passive**:

- Active elements can *generate* energy; e.g., batteries and generators are active.
- Passive elements <u>can't</u> generate energy (but some can <u>store</u> energy); resistors, capacitors and inductors are passive.

Four Basic Active Elements

Dependent (controlled) Voltage Source:

Two terminal element that maintains a specified voltage between its terminals that is determined by another voltage or current elsewhere in the circuit.

<u>Dependent</u> (controlled) Current Source:

Two terminal element that maintains a specified current flow that is determined by another current or voltage elsewhere in the circuit.

Four Basic Active Elements

Independent Voltage Source:

Two terminal element that maintains a specified voltage between its terminals *regardless* of the current through it.

Independent Current Source:

Two terminal element that maintains a specified current flow *regardless* of the voltage across its terminals.

Four Basic Active Elements

