Circuit Analysis

ECSE 210: Circuit Analysis

Lecture \#1: Introduction

Linear Electric Circuits

- A linear circuit satisfies the properties of superposition and homogeneity.

Example:
Circuit with input i and output v
$i \longrightarrow v$

- Superposition:

- Homogeneity:

- Design

Creation of a Circuit

- AnalysisEvaluation of a Circuit

Electric Circuit:

An interconnection of electrical elements linked together in a closed path so that electric current may flow.

Analogy: water flow

Linear Electric Circuits

- Example of a linear element: The resistor

$$
\xrightarrow[\longrightarrow]{+{ }_{\sim}^{v}}{ }^{+} \quad v=i R
$$

- Superposition:

- Homogeneity:

$$
i \rightarrow v=i R \quad \longrightarrow \quad k i \longrightarrow k i R=k v
$$

Linear Electric Circuits

- Example of a nonlinear element:

- Superposition:

$$
\left.X \quad \begin{array}{c}
i_{1} \longrightarrow v_{1}=e^{i_{1}} \\
i_{2} \rightarrow v_{2}=e^{i_{2}}
\end{array}\right\} \rightarrow \begin{gathered}
i_{1}+i_{2} \\
\nrightarrow v=e^{i_{1}+i_{2}} \\
\neq e^{i_{2}}
\end{gathered}
$$

- Homogeneity:

$$
i \rightarrow v=e^{i} \rightarrow k i \rightarrow e^{k i} \neq k e^{i}
$$

Circuit Analysis - Basic steps

Given Circuit (Design)

1. Identify element models (e.g., $\mathrm{V}=\mathrm{IR}$ for resistor).

- $\frac{0}{\omega}$ 2. Define analysis variables (e.g., currents, voltages).
\gtrsim 3. Assemble circuit equations (e.g., KCL, KVL).
$\underset{\text { © }}{\text { © }}$ 4. Solve circuit equations (e.g., matrix methods, computer...)
$<\quad$ 5. Evaluate circuit performance (e.g., power delivery, dynamic response, frequency response)

Interpretation of results

- Example of superposition

- Remove i_{2} and calculate v
- Remove i_{l} and calculate v
- Add the two solutions

Circuit Analysis

Note: Circuit analysis yields the "physical" performance of idealized electric circuits, without concern for the actual systems represented by the circuits.

- Circuit models are used to approximate real systems;
- Circuit analysis determines the performance of circuit models.
- Electrical engineers use circuits to estimate the performance of real systems and devices.

Question: Do circuit models provide the exact performance of real electric circuits?

Some SI Units
Standard SI prefixes

Quantity	Unit	Symbol
length	Meter	m
time	second	s
charge	Coulomb	C
current	Ampere	A
voltage	Volt	V
resistance	Ohm	Ω
capacitance	Farad	F
inductance	Henry	H
energy	Joule	J
power	Watt	W

Standard SI prefixes

Examples:

0.0015 Amperes should be written 1.5 mA
$3,500,000$ Watts should be written 3.5 MW
0.0012 mA should be written as $1.2 \mu \mathrm{~A}$
\longrightarrow Concept of significant figures vs. decimal places

Prefix	Symbol	Multiplier
pico	p	10^{-12}
nano	n	10^{-9}
micro	μ	10^{-6}
milli	m	10^{-3}
kilo	k	10^{+3}
mega	M	10^{+6}
giga	G	10^{+9}
tera	T	10^{+12}

Standard SI prefixes

Examples:

0.0015 Amperes should be written 1.5 mA
$3,500,000$ Watts should be written 3.5MW
0.0012 mA should be written as $1.2 \mu \mathrm{~A}$
\longrightarrow Concept of significant figures vs. decimal places

More Basics - Current

Circuit analysis current variables must be defined with prescribed directions.

Does it matter which direction we assign to the current?

More Basics - Current

There are two types of current:

- Time-invariant (stationary), commonly
known as direct current (dc).
- Time-varying, e.g, the sinusoidal
alternating current (ac)

(ac)

(dc)

More Basics - Current
Current variable need not correspond to physical current flow.

Voltage or Potential

Charge in motion \longrightarrow Energy Transfer

- The voltage between two points in a circuit is defined as the difference in energy level of a positive unit charge located at each of the two points.
- In other words, the voltage between two points is the energy required to move a positive unit charge between the two points.
- Circuit analysis voltage variables must be defined with prescribed orientation - to identify the point at higher potential.
- The " + " and " - " signs are used: " + " marks the point of higher potential and "-" marks the point of lower potential.

Voltage or Potential

Does it make a difference which orientation we assign to a voltage variable?

Resist mixing variables and values.

Be consistent.

Power

Power flow in an electric circuit is defined by the

 "rate of movement of energy" in the circuit.$$
P=V I \quad \text { or } \quad p(t)=v(t) i(t)
$$

with the passive sign convention (psc) assumed.

Under these conditions (psc), if $p(t)$ is positive then power is absorbed by the element; if $p(t)$ is negative, then power is supplied by the element.

Energy Transfer

By definition (passive sign convention)

- Positive current into positive terminal \rightarrow energy absorbed.
- Positive current into negative terminal \rightarrow energy supplied.

Question: Where does the absorbed (supplied) energy come from (go to)?

Circuit Elements

- In circuit analysis, physical circuit elements are represented by abstract mathematical models which describe their behavior
- When we refer to a circuit element we actually mean the mathematical model that describes its behavior
- In this course, all the circuit elements are terminal devices, completely characterized by the current through the element and/or the voltage across it.

Passive vs. Active Elements

Two types of elements: active and passive:

- Active elements can generate energy; e.g., batteries and generators are active.
- Passive elements can't generate energy (but some can store energy); resistors, capacitors and inductors are passive.

Four Basic Active Elements

Dependent (controlled) Voltage Source:

Two terminal element that maintains a specified voltage between its terminals that is determined by another voltage or current elsewhere in the circuit.

Dependent (controlled) Current Source:

Two terminal element that maintains a specified current flow that is determined by another current or voltage elsewhere in the circuit.

Four Basic Active Elements

Independent Voltage Source:

Two terminal element that maintains a specified voltage
between its terminals regardless of the current through it.

Independent Current Source:

Two terminal element that maintains a specified current flow regardless of the voltage across its terminals.
$v(t)$

$i(t)$

