ECSE 210: Circuit Analysis

Lecture #1: Introduction

Circuit Analysis

- Design
 Creation of a Circuit
- Analysis
 Evaluation of a Circuit

<u>Electric Circuit:</u>

An interconnection of electrical elements linked together in a <u>closed path</u> so that electric current may flow.

Analogy: water flow

- A linear circuit satisfies the properties of superposition and homogeneity.
 - Example:

Circuit with input *i* and output *v*

$$i \rightarrow v$$

Superposition:

• Homogeneity:

 $i \rightarrow v \rightarrow ki \rightarrow kv$

• Example of a linear element: The resistor

• Example of a nonlinear element:

Example of superposition

- Remove *i*₂ and calculate *v*
- Remove *i*₁ and calculate *v*
- Add the two solutions

Circuit Analysis – Basic steps

Given Circuit (Design)

- 1. Identify element models (e.g., V=IR for resistor).
- 2. Define analysis variables (e.g., currents, voltages).
- 3. Assemble circuit equations (e.g., KCL, KVL).

Analysis

- 4. Solve circuit equations (e.g., matrix methods, computer...).
- 5. Evaluate circuit performance (e.g., power delivery, dynamic response, frequency response)

Interpretation of results

Circuit Analysis

- Note: Circuit analysis yields the "physical" performance of *idealized* electric circuits, without concern for the actual systems represented by the circuits.
 - Circuit models are used to <u>approximate</u> real systems;
 - Circuit analysis determines the performance of circuit *models*.
 - Electrical engineers use circuits to <u>estimate</u> the performance of real systems and devices.

Question: Do circuit models provide the exact performance of real electric circuits?

Some SI Units

Quantity	Unit	Symbol
length	Meter	m
time	second	S
charge	Coulomb	С
current	Ampere	A
voltage	Volt	V
resistance	Ohm	Ω
capacitance	Farad	F
inductance	Henry	Н
energy	Joule	J
power	Watt	W

Standard SI prefixes

Prefix	Symbol	Multiplier
pico	р	10-12
nano	n	10-9
micro	μ	10-6
milli	m	10-3
kilo	k	10+3
mega	М	10+6
giga	G	10+9
tera	Т	10+12

Standard SI prefixes

Examples:

0.0015 Amperes should be written 1.5mA 3,500,000 Watts should be written 3.5MW 0.0012 mA should be written as 1.2μ A

Concept of significant figures vs. decimal places

Standard SI prefixes

Examples:

0.0015 Amperes should be written 1.5mA 3,500,000 Watts should be written 3.5MW 0.0012 mA should be written as 1.2μ A

Concept of significant figures vs. decimal places

More Basics - Current

Circuit analysis <u>current variables</u> must be defined with prescribed <u>directions</u>.

Does it matter which direction we assign to the current?

Current variable need not correspond to *physical* current flow.

There are two types of current:

- Time-invariant (stationary), commonly known as *direct current* (dc).
- Time-varying, e.g, the sinusoidal alternating current (ac)

Voltage or Potential

- The <u>voltage between two points</u> in a circuit is defined as the difference in energy level of a positive unit charge located at each of the two points.
- In other words, the voltage between two points is the energy required to move a positive unit charge between the two points.
- Circuit analysis voltage variables must be defined with prescribed orientation – to identify the point at higher potential.

• The "+" and "-" signs are used: "+" marks the point of higher potential and "-" marks the point of lower potential.

Voltage or Potential

Does it make a difference which orientation we assign to a voltage variable?

Resist mixing variables and values.

Be consistent.

Energy Transfer

By definition (passive sign convention)

- Positive current into positive terminal \rightarrow energy absorbed.
- Positive current into negative terminal \rightarrow energy supplied.

Question: Where does the absorbed (supplied) energy come from (go to)?

Power

Power flow in an electric circuit is defined by the "rate of movement of energy" in the circuit.

$$P = VI$$
 or $p(t) = v(t)i(t)$

with the passive sign convention (psc) assumed.

Under these conditions (psc), if p(t) is **positive** then power is **absorbed** by the element; if p(t) is **negative**, then power is **supplied** by the element.

Circuit Elements

- In circuit analysis, physical circuit elements are represented by abstract mathematical models which describe their behavior.
- When we refer to a circuit element we actually mean the mathematical model that describes its behavior.
- In this course, all the circuit elements are terminal devices, completely characterized by the current through the element and/or the voltage across it.

Passive vs. Active Elements

Two types of elements: *active* and *passive*:

• Active elements can <u>generate</u> energy; e.g., batteries and generators are active.

• Passive elements <u>can't</u> generate energy (but some can <u>store</u> energy); resistors, capacitors and inductors are passive.

Four Basic Active Elements

Independent Voltage Source:

Two terminal element that maintains a specified voltage between its terminals *regardless* of the current through it.

Independent Current Source:

Two terminal element that maintains a specified current flow *regardless* of the voltage across its terminals.

Four Basic Active Elements

<u>Dependent</u> (controlled) Voltage Source:

Two terminal element that maintains a specified voltage between its terminals that is determined by another voltage or current elsewhere in the circuit.

<u>Dependent</u> (controlled) Current Source:

Two terminal element that maintains a specified current flow that is determined by another current or voltage elsewhere in the circuit.

Four Basic Active Elements

