ECSE 210: Circuit Analysis Lecture #28:

Passive Filter Networks

Passive Filter Networks

Filters are designed to *pass* signals in a given frequency range and *reject* or *attenuate* signals outside that range.

- → "Pass" frequency range is called "passband".
- → "Reject" frequency range is called the "rejection band"
- → There are four common passive filter types:
 - 1. Low-pass: designed to pass low frequencies and reject high frequencies.
 - 2. High-pass: designed to pass high frequencies and reject low frequencies.
 - **3. Band-pass**: designed to pass frequencies within a specific band and reject all others.
 - 4. Band-reject: designed to reject frequencies within a specific band are reject all others.

Ideal response: Pass all frequencies up to a cut-off ω_o , but reject all frequencies above it.

Low Pass Filter Example

Circuit has a single real pole: $p = -\omega_o$

→ First order filter.

Example Low-Pass Filter

 \rightarrow First order filter:

$$\mathbf{H}(s) = \frac{\omega_o}{s + \omega_o}$$

High-Pass Filter

Ideal response: Pass all frequencies above a cut-off ω_o , but reject all frequencies below it.

High-Pass Filter Example

Circuit has a single real pole $p = -\omega_o$ and a single zero at the origin

→ First order filter.

Example Low-Pass Filter

Band-Pass Filter

Ideal response: Pass all frequencies within a specific band (frequency range), but reject all other frequencies.

$$\left|\mathbf{H}(s)\right| = \frac{\omega RC}{\sqrt{\left(1 - \omega^2 LC\right)^2 + \left(\omega RC\right)^2}}$$

$$|\mathbf{H}(s)| = \frac{\omega RC}{\sqrt{(1 - \omega^2 LC)^2 + (\omega RC)^2}}$$

$$\omega \to 0 \quad \Longrightarrow \quad |\mathbf{H}(s)| \to 0$$

$$\omega \to \infty \quad \Longrightarrow \quad |\mathbf{H}(s)| \to 0$$

Response is Maximum at resonant frequency

The pass-band is between the two half-power frequencies.

Half-power frequencies:

$$\left|\mathbf{H}(s)\right| = \frac{\omega RC}{\sqrt{\left(1 - \omega^2 LC\right)^2 + \left(\omega RC\right)^2}} = \frac{1}{\sqrt{2}}$$

$$\frac{(\omega RC)^2}{(1-\omega^2 LC)^2 + (\omega RC)^2} = \frac{1}{2} \qquad \Longrightarrow \qquad 2(\omega RC)^2 = (1-\omega^2 LC)^2 + (\omega RC)^2$$

$$(1 - \omega^2 LC)^2 = (\omega RC)^2 \quad \square \quad 1 - \omega^2 LC = \pm \omega RC$$

Half-power frequencies:

$$1 - \omega^2 LC = \pm \omega RC \qquad \Longrightarrow \qquad \omega^2 \pm \frac{R}{L} \omega - \omega_o^2 = 0$$

Solving for two positive roots results in half-power or cutoff frequencies:

Band-Reject Filter

Ideal response: Rejects all frequencies within a specific band (frequency range), but passes all other frequencies.

Band-Reject Filter Example

Band-Reject Filter Example

$$|\mathbf{H}(s)| = \frac{|1 - \omega^2 LC|}{\sqrt{(1 - \omega^2 LC)^2 + (\omega RC)^2}}$$

$$\omega \to 0 \quad \longrightarrow \quad |\mathbf{H}(s)| \to 1$$

$$\omega \to \infty \quad \longrightarrow \quad |\mathbf{H}(s)| \to 1$$

At
$$\omega_o = \frac{1}{\sqrt{LC}} \quad \longrightarrow \quad |\mathbf{H}(s)| = 0$$

Center frequency = resonant frequency

The rejection band is between the two half- power frequencies.

Half-power frequencies:

$$\left|\mathbf{H}(s)\right| = \frac{\left|1 - \omega^2 LC\right|}{\sqrt{\left(1 - \omega^2 LC\right)^2 + \left(\omega RC\right)^2}} = \frac{1}{\sqrt{2}}$$

$$2(1-\omega^2 LC)^2 = (1-\omega^2 LC)^2 + (\omega RC)^2$$
$$1-\omega^2 LC = \pm \omega RC \qquad \implies \qquad \omega^2 \pm \frac{R}{L}\omega - \omega_o^2 = 0$$

Band-Reject Filter Example

Half-power frequencies:

$$\omega^2 \pm \frac{R}{L}\omega - \omega_o^2 = 0$$

Solving for two positive roots results in half-power or cutoff frequencies:

LOADING

• No current in the output impedance

 $V_2(s) = H_1(s) V_i(s)$ $\hat{\uparrow}$ TRANSFER FUNCTION LOADING FOR A CASCADE

- $V_3 = H_2 V_2$ • $V_2 = \frac{Z_{i2}}{Z_{o1} + Z_{i2}} H_1 V_1$ Voltage divider
 - Connecting second stage to first stage has changed the output 1/2 of the first stage
 - The second stage is loading the first stage.

• Now
$$V_3 = H_2 \frac{Z_{i2}}{Z_{01} + Z_{i2}} H_1 V_1$$

or
$$H = \frac{V_3}{V_4} = H_2 \frac{Z_{i2}}{Z_{01} + Z_{i1}} H_1$$

H = H₁ H₂ if
 1 Ziz = ∞ (Very large)
 or (D) Zoz = 0 (Very small)
 MINIMAL LOADING