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Lecture #26: 

Resonant Circuits



Poles and Circuit Dynamics
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Poles and Circuit Dynamics

H(s) =
Vo(s)
Vi(s)

=
ωo

2

s2 + 2ζωos + ωo
2

1<ζ
2

2,1 1 ζωζω −±−= oo jp djωα ±−=

221 ζωω −= or2
1

<ζ

ωo is the undamped natural frequency (from the circuit).
ωd is the damped natural frequency.
ωr is the resonant frequency.
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Poles and Frequency Response

1.15dB

ωr = 70.7rad./sec. 707.05.0 <=ζ

ωo = 100rad./sec.



Poles and Natural Response
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Poles and Natural Response
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Series Resonant Circuit
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Resonant Circuits
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How does the numerator affect the
response Io(s) for a given input Vi(s) ?

What is the resonant frequency, ωr?

Remember :ωr = ωo 1− 2ζ 2 .



Resonant Circuits

ωr , the resonant frequency, is defined as the frequency at 
which |H(jω)| is a maximum (or minimum).
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Resonant Circuits

It is often difficult to find the exact frequency at which 
the maximum response occurs for a given circuit. There 
are two common approximations that work reasonably 
well for lightly damped circuits:

The frequency at which the impedance Z(s)=Y-1(s)
is real is taken to be the resonant frequency.
The undamped natural frequency ωo is taken to be 
the resonant frequency.



Recall: Quality Factor

cycleper  dissipatedenergy 
storedenergytotal2π=Q

The quality factor of a circuit is defined in terms of energy:

The resonant Q is the Q at the resonant frequency.

Qo = 2π
maximum total energy stored
energy dissipated per cycle

For the series resonant circuit:
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Bandwidth

Ω= 2R
C = 5µF
L = 2mH
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Quality Factor and Bandwidth
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Quality Factor and Bandwidth
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Quality Factor and Bandwidth
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Quality Factor and Bandwidth

It can also be shown that: ( )2
21 oωωω =

The resonant frequency is the geometric mean of the two 
half power frequencies.
The bandwidth is referred to as half-power or 3dB 
bandwidth.
For a series RLC circuit, Q is inversely proportional to the 
bandwidth.
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A high Q series RLC circuit has a small resistance and a 
small bandwidth (circuit is very selective).



Example

2Ω 25mH

10µF+-Vi(s)

Resonant frequency ωo =
1
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= 2000 rad./sec.
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Example

C L

R+-Vi(s)

Find R, L and C such that the above circuit operates 
as a band-pass filter with a center frequency of 1000 
rad./sec. and bandwidth of 100 rad./sec.
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Example
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Two equations and three unknowns. Therefore we 
have multiple solutions.

 



Example

For example, choose:
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The above is one set of parameters that satisfy the 
design requirements. We can find others.


