ECSE 210: Circuit Analysis
Lecture #26:

Resonant Circuits



Poles and Circuit Dynamics
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Poles and Circuit Dynamics
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Poles and Circuit Dynamics

V.(9) _ @,

0

V(s) s8*+2los+o’

If (<] == pl,zz—é’a)oija)o—\/l—é'z =—atjo,

H(s) =

1

For { < ﬁ m=) the amplitude peaks at W, = @, \/ 1-2¢ ’

- o, is the undamped natural frequency (from the circuit).
- ®, is the damped natural frequency.
= . 1s the resonant frequency.



Poles and Frequency Response
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Poles and Natural Response
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Natural response:

v (1)=A e ™ cos(w,t+ @)

Damped natural frequency



Poles and Natural Response
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Series Resonant Circuit
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Note that D(s) is second order = s g 2w, s + a)j



Resonant Circuits
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How does the numerator affect the
response I (s) for a given input V.(s) ?

What is the resonant frequency, ®,?



Resonant Circuits

@, , the resonant frequency, is defined as the frequency at
which [H(jw)| is a maximum (or minimum).
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Resonant Circuits

It 1s often difficult to find the exact frequency at which
the maximum response occurs for a given circuit. There
are two common approximations that work reasonably
well for lightly damped circuits:

—> The frequency at which the impedance Z(s)=Y"1(s)
is real 1s taken to be the resonant frequency.

— The undamped natural frequency o, is taken to be
the resonant frequency.



Recall: Quality Factor

The quality factor of a circuit is defined in terms of energy:

0= total energy stored

energy dissipated per cycle

The resonant Q is the Q at the resonant frequency.

maximum total energy stored

Q,=2rx —
energy dissipated per cycle

For the series resonant circuit:
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Bandwidth
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Quality Factor and Bandwidth
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Quality Factor and Bandwidth
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Quality Factor and Bandwidth

Taking only positive roots:




Quality Factor and Bandwidth

2
It can also be shown that: @0, = (a)o )

—> The resonant frequency is the geometric mean of the two

half power frequencies.
—> The bandwidth is referred to as half-power or 3dB

bandwidth.
—> For a series RLC circuit, Q is inversely proportional to the
bandwidth.

0 - _@L__1 _1\F
> BW R wRC R\C

= A high Q series RLC circuit has a small resistance and a
small bandwidth (circuit 1s very selective).




Example
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Resonant frequency ) = L = 2000 rad./sec.
’ VLC

L @
Qoza)o =25 BW =w, - w,=—

=80 rad./sec.
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Find R, L and C such that the above circuit operates

as a band-pass filter with a center frequency of 1000
rad./sec. and bandwidth of 100 rad./sec.



Example

/ 1
W = E:IOOO rad./sec. wmmdp [C=10"°

a)O

o = .
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L
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o :

- Two equations and three unknowns. Therefore we
have multiple solutions.

BW =




Example

—> For example, choose:

C=1ulF
) [ = 10~ =1H
C
L
mm) R-= 02 =100Q2

—> The above is one set of parameters that satisfy the
design requirements. We can find others.



