McGill University Faculty of Engineering

FINAL EXAMINATION Winter 2006

			• "
FAMILY NAME (PRINT)	FIRST NAME (PRINT)	SECTION	STUDENT I.D.

Circuit Analysis ECSE 210

Examiner: Prof. M. D. Levine

Co-Examiner: Prof. R. Khazaka

Signatures Westin Leve Signature: Post

Dato: Tuesday, April 11, 2006

Time: 2:00 PM

INSTRUCTIONS

- Use either a pen or HB pencil.
- The total number of points in this examination is 35, which will be pro-rated to 70% of the final grade.
- This is a closed book examination.
- Make sure that your solutions are written on the consecutive pages provided. Four extra pages may be found at the end.
- You are permitted regular and translation dictionaries.
- Faculty standard calculator permitted only.
- This examination paper must be returned.

EVALUATION OF EXAM PAPER

Question #	1	2	3	4	5	6
weight	5	6	8	6	5	4
SCOP8				. –		

Total	Score		
-------	-------	--	--

[6 marks]

 The circuit below, containing a two-port with a hybrid parameter matrix H within it, was designed to have a transfer function given by:

$$\frac{V_o(s)}{V_{in}(s)} = \frac{2s - 10}{s^2 + 27s + 2}$$

- (a) Sketch the h-parameter equivalent model for the two-port.
- (2 marks)
- (b) Determine whether the circuit in the figure satisfies the above transfer function. Show the details of your analysis.
 (4 marks)

Write the final answer on page 6.

[6 marks]

- 2. Consider the circuit shown below.
- (a) Determine the type of fifter that the circuit represents. Explain your reasoning. (3 marks)
- (b) Calculate the corner or cutoff frequency when R=2k Ω , L=2H and C=2 μ F.

(3 marks)

Write the final answer on page 10.

[8 marks]

3. Determine the transfer function H(s) for the amplitude Bode plot shown below.

Write the final answer on page 14,

[6 marks]

- 4. The figure below shows a balanced Y-to-∆ three-phase circuit. The phase voltages of the Y-connected source are V_{*}=110∠0° V rms, V_{*}=110∠-120° V rms, and V_{*}=110∠+120° V rms. The line impedances are each Z_{*}=10+/5 □. The impedances of the ∆-connected load are each Z_{*}=75+/225 □.
 - (a) Determine the phase currents in the Δ -connected load. (5 marks)
 - (b) Determine the total average power delivered to the load. (1 mark)

Write the final answer on page 18.

[5 marks]

 The input to the circuit shown below is the voltage of the eurypats source,

v_(t)=7.28 cos(4#+77") V

The output is the voltage across the inductor, $v_o(t)=4.254\cos(4t+311^\circ)$ V

Determine the following:

- (a) The average power supplied by the voltage source (2 marks)
- (b) The average power received by the resistor (1 mark)
- (c) The average power received by the Inductor (1 mark)
- (d) The power factor of the impedance of the series connection of the resistor and inductor (1 mark)

Write the final answer on page 22.

[4 marks]

- 6. Consider the circuit shown below. The input to the circuit is the voltage source, $v_s(t)$, and the output is the voltage across the 4 Ω resistor. When the input is $v_s(t)=8.93 \cos(2t+54^\circ)$ V, the corresponding output is $v_s(t)=3.83 \cos(4t+83^\circ)$ V.
 - (a) Determine the voltage, $v_s(t)$, across the 9 Ω resistor. (2 marks)
 - (b) Determine the value of the capacitance C.(2 marks)

Write the floai answer on page 26.