Qm"‘wv\ #A-
Dorf 5 e+n EA.

Two identical networks connected in parallel will have a total Y matrix of

Y=Y, +Y,
Since Y, = Y},, we have
4 2
- 13, .3
Y—Z'l'ﬂ—_2 4
3 3

Finally, when two identical networks are connected in cascade, we have a total T matrix of
2 3|12 3 7 12
=15 “[1 2][1 2]‘[4 7]

Exercise 17.9-1 Determine the total transmission parameters of the cascade con-

nection of three two-port networks shown in Figure E 17.9-1.
Answers: A=3,B=21Q,C=1/68,and D = 3/2

12 Q I I 3Q

FIGURE E 17.9-1

17.10 Verification Example
PROBLEM @
The circuit shdWn in Figure 17.10-1a was designed to have a transfer function given by

Vo) 25-10
Vins)  §% 4275+ 2

Does the circuit satisfy this specification?

Verification Example - o

k t “"k\lv'l-

11
1/ F LU

20 "

20

il

e
—
+

| 3 2 e 5
L = { 1y a
i -10 0.25 e vin (* 1nSog

“104,

e

s F 5=

-

1 | 1

Eriven @) 2 warks

FIGURE T1%.10-1

{a) A carcunt moluding a two-port network. (8) Using the A-parameter model to represent the two-port network.
' o Vo = 41, 440l

- T,
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@ - Two-Port and Three-Port Networks

SOLUTION
The h-parameter model from Figure 17.7-1 can be used to redraw the circuit as shown in

Figure 17.10—1...This circuit can be represented by node esuatiog§

5 5
- i [HE) T2 |[ve] (e 2 wiorhks
V2 2 = ©F sy (3 N||vwe|T| 2
3 5o (_+_) 0
Taz wok, 4—_\_143-' ( ) ot

where 10/,(s) = 5V/(s) has been used to express the current of the dependent source in
terms of the node voltages. Applying Cramer’s rule gives

M 1 ( s] —
- 5 o —
Vols) 2\" 2 ) 2s+20

Vinls) 1+£I§+1)_£(£+5 s — 135+ 2
2AN4 4] 2\2

This is not the required transfer function, so the circuit does not satisfy the specification.
el

)

Exercise 17.10-1 Verity that the circuit shown in Figure E 17.10-1 does indeed

have the transfer function - 1% no M \\:o > wre
v, get Og.
Vi + - 1-/2 ) -F C"‘!-p
% i& } “ Q'C (The circuits in Figures 17.10-1¢ and E 17.10-1 differ only in the sign ofhzl ) W\"og

I
I
z

& Y e PBEPL A3 L =

A e +

V'u-.-\lu - Vi ( \!.—\/-..)s Uin n=| 2 ¢ 1a F = Yo

A) s B e e M TN O 10 0.25 .

7z Z g J_
FIGURE E 17.10-1
'B) \)05 - -lOU A modified version of the circtit from _L :
.___‘ + \‘0 Figure 17 10-1. =
p !

ESIGN CHALLENGE SOLUTION

i TRANSISTOR AMPLIFIER

Figure 17.11-1 shows the small signal equivalent circuit of a transistor amplifier. The data
sheet for the transistor describes the transistor by specifying its & parameters to be

hie = 1250Q, h,. =0, he =100, and k=0

The value of the resistance R, must be between 300 ) and 5000 ) to ensure that the tran-
sistor will be biased correctly. The small signal gain is defined to be

vo '

A m Gu-o-—- HCs) at &(S'b)q,,go 141-)\‘- . .
/7 Fw'c-—-euj C s ova opan. o.d L. a_._g‘m Gane [H(b))"h:)!




Figure 14.37
A bandstop filter.
| H(w)| &
1 \
L R Actual
,— Ideal
o W, Wy W 5

Figure 14.38
Ideal and actual frequency response of a
bandstop filter.

]
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Chapter 14  Frequency Response

highpass filter (where @, = @) i Fig. 14.33. However, the result would
not be the same as just adding the output of the lowpass filter to the
input of the highpass filter, because one circuit loads the other and alters
the desired transfer function.

14.7.4 Bandstop Filter

A filter that prevents a band of frequencies between two designated
values (w, and w,) from passing is variably known as a bandstop, band-
reject, or notch filter. A bandstop filter is formed when the output RLC
series resonant circuit is taken off the LC series combination as shown
in Fig. 14.37. The transfer function is
Vv, (wl — 1/wC)
Hie) = 22 = i@ /

V. R+ jloL -1/l
Notice that H(0) = 1, H(e) = 1. Figure 14.38 shows the plot of |H(w)|.
Again, the center frequency is given by

1
T vie

while the half-power frequencies, the bandwidth, and the quality fac-
tor are calculated using the formulas in Section 14.5 for a series reso-
nant circuit. Here, wq is called the frequency of rejection, while the
corresponding bandwidth (B = w; — ) is known as the bandwidth of
rejection. Thus,

(14.56)

(14.57)

A bandstop filter is designed to stop or eliminate all frequencies
within a band of frequencies, w¢ < w < we.

Notice that adding the transfer functions of the bandpass and the
bandstop gives unity at any frequency for the same values of R, L, and
C. Of course, this is not true in general but true for the circuits treated
here. This is due to the fact that the characteristic of one is the inverse
of the other.

In concluding this section, we should note that:

1. From Egs. (14.50), (14.52), (14.54), and (14.56), the maximum gain
of a passive filter is unity. To generate a gain greater than unity,
one should use an active filter as the next section shows.

2. There are other ways to get the types of filters treated in this section.

3 The filters treated here are the simple types. Many other filters have
sharper and complex frequency responses.

p-588 v TET
#

Determinwmt type of filter is shown in Fig. 14.39. Calculate the cor-
ner or cutoff frequency. Take R = 2 k{2, L = 2 H, and C =2 uF.

Solution:
The transfer function is
A% R\ 1/sC

OUS. WL L S 14.10.1)
Ho =y =g +rjisc ° \



14,7 Passive Filters

But

W R/sCc _ R
sC R+ 1/sC 1 + sRC
Substituting this into Eq. (14.10.1) gives A‘
R/(1 +sRC) _ _ R Figure 14.39

G Bl BT 5 = jw
H(s) sL + R/(1 + sRC) s2RLC + sL + R J For Example 14.10.
Ve

J—

or Lo
< 4 s
- : Sler+ 1

H(w) = W (14.10.2) Qlet covrvedt
— w 2

*;U J Pl = oo

Since H(0) = 1 and H(=) . we conclude from Table 14.5

circuit in Fig. 14.39 is a second-order lowpass filter. he magnitude

of His

R
Hz_—\/_——’_—”,—»—-?:—z_‘;
(R — w RLC) wlL

The corner frequency is the same as the half-power frequency, i.e..
where H is reduced by a factor of 1/V/2. Since the dc value of H{w)
is 1, at the corner frequency, Eq. (14.10.3) becomes after squaring

1 R?
PRege - =
2 (R — wlRLCY + WL’ ’ o

(14.10.3)

or

5 s w, L 2
2= (1 — wlQ) + ( —)
R

Substituting the values of R, L. and C, we obtain
7= (1 widx 10 O+ (10 32
Assuming that @, is in krad/s,
7= (1 ~ 40P+ @l wur 16w’ — Tl = 1=10

Solving the quadratic equation in w’, we get w? = 0.5509 and -0.1134.
Since w, is real,

w. = 0.742 krad/s = 742 rad/s 1

8.2 e

For the circuit in Fig. 14.40, obtain the transfer function V, (w)/Viw). PraCtiCG
Identify the type of filter the circuit represents and determine the cor-
ner frequency. Take Ry = 100 Q = Ry, L =2 mH.

R ;
Answer: E ( & ~), highpass filter

Rl + Rz _]U) + (1778
RIRZ
w,=——"——=125 krad/s. Figure 14.40
Ry + RyL For Practice Prob. 14.10.
-




Bode Plots - @

E 3.3-1_Bode Pl Quaahion #3
XAMPLE 13.3-1 ode ol ———T

nd the asymptotic magnitude Bode plot of
. Jw
H(w) = K — o
1 4 7=

I

olution
: : Lw !
&)proxunate (l + J : ) by 1 when @ « p and by 7 C when o > pto get
P r
Kl_,fm] w < [

H(m) =
Kp w > p

he logarithmic gain is
2 ! T+ 2 "<
50 g g @) 2= 4 logyq K +30 logjgm wr=< p
IULM(KI)J (W = p 5

he asymptotic magnitude Bode plot 1s shown in Figure 13.3-5. The jw factor in the numerator of H(w) causes the
ow-frequenu asymptote to have a slope of 20 dB/decade. The slope of the asymptotic magnitude Bode plot decreases

20 dB/decade (from 20 dB/decade to zero) as the frequency increases past w =p

dB

decade

20

20 logyol&Kp)
[
|
%
|

ERalt

20 logyo|Hlw)f, dB* -

Py

FloU R 13 35
8
. i
e g—

Asymptotic magnitude Bode plot tor Example 133

Bode Plot of a Circuit @W? INTERACTIVE EXAMPLE

EXAMPLE 13.3-2
Consmler the circutt shown m Figure 13 3-6a The mput to the circutt is the voltage of the voltage source, vi(£).
_The output is the node voltuge at the output ternmmal of the op amp, v, (/) The network function that represents this

o Hogarithmae sealed

(13.3-4)

‘,-cn"cuﬁ 18
Vo)

Hii) -
\ o)

The correspondimy magnitude Bode plot s shown i Frgare 13 3-6h Determine the values of the capacitances, €y

L and C;.
4 connection between the cireut and the Bode plot. We can determine the network

£ Solution
he network tunction provides
. function from the Bode plot. and we can also analyze the cireat to determine its network tunction. The values of the

- gapacitances are determined by equating the coct ficients of these two network tunctions



@ » Frequency Response ’

A [Hiw) (dB)
159+
C e i) 4 : > o), rad/sec
1 3 80 500 (log scale)
1594
o
B A
(a) {b)

. FIGURE 13.3-6 The circuit and Bode plot considered in Example 13.3-2

Step 1:  Let’s make some observations regarding the Bode plot shown in Figure 13.3-64:

.1 There are two corner frequencies, at 80 and 500 rad/s. The corner frequency at 80 rad/s 1s 2-
- a pole because the slope of the Bode plot decreases at 80 rad/s. The corner frequency at

500 rad’s is a zero because the slope increases at 500 rad/s.

2 500
80

- 2. The corner frequencies are separated by log

' —159 - 159
Bode plot 1s 3.79¢ = —40 dB/decade petween the corner frequencies.
. h]

. 3. Atlow frequencies  that is, at frequencies smaller than the smallest corner frequency —the
~slope is —1 x 20 dB/decade, so the network function includes a factor (jw)

) = ().796 decades. The slope of the

N

- Consequently, the network function corresponding to the Bode plot is

7] )

4 s |+ jo :

.= -== Hw) = k(jo) '| =200 | — 4500 2. (13.3-5)
1+ j-— ;'m(l +j—) .

where k is a constant that is vet to be
p i: XLWC analyze the circuit shown in Figure 13.3-64 to determine its network function. A network .}
function is the ratio of the output phasor to the input phasor. Phasors exist in the frequency domain. Consequently, our
first step is to represent the circuit in the frequency domain, using phasors and impedances. Figure 13.3-7 shows the
frequency-domain representation of the circuit from Figure 13.3-6a.
To analyze the circuit in Figure 13.3-7, we first write a node equation at the node labeled as node a. (The current -
entering the noninverting mput of the op amp is zero. so there are two currents in this node equation, the currents in 3

the impedances corresponding to 125-k2 resistor and capacitor (') ( ) - \WW.5 C.Sﬁfﬁ) é
Viim) - Viw) _ Vilw) H S/= ? c Smj ?
I I |

i ;;( ‘|

10 ka2 b pand M’ LW = ?O 5 H(Su)) = ‘S.qdb

. . 1
1\5.9 = 2olgk "'2""3 tﬂ}.&u 50 |
! k SDJ (SDJ'M)—l:
O MRS =leghk . (csSys
v, () _+> i,y T v () v.(m) k =2 0 0,795 - Ligaéﬂ om?f'z;{‘?_‘_‘_ “ ls
' L

Fiaukre 13.3-7
J The circuit from Figure [3.3-0a, represented in the frequency domain, using mpedances

and phasors




Bode Plots @

/.(w) is the node voltage at node a. Doing a little algebra gives

Vilw) ( ] )
Treear-iel krrrer Rt S L

Vi(w)
1+ jwC (125 x 10%)

¢ write 2 node equation at the node labeled as node b. (The current entering the inverting input of the o
5o there are two currents in this node equation, the currents in the impedances corresponding to 10-k€2

Vi) = (1 + joCi(125 x 10°))Vi(@) = Vi) =

pacitor C;.)
Valw) + Va(w) — Vo(w) _
10 x 10° 1
JjwCs

0

f;;gisome algebra gives

| Va(@) + joCa(10 x 10°)(V (@) = Vo(w)) = 0

(1 + jwCa(10 x 10*))Vy(w) = jwC2(10 x 10°)Vy(w)

Vi(w)

[ + jwCi(125 x 10%)

_ Ve(w) ( 1 ) 1 4 jwCa(10 x 10%)
Vilw) C5(10 x 10*) ) )1 + joC(125 x 10%)

The network functions given in Egs. 13.3-5 and 13.3-6 must be equal. That is,

= jwC3(10 x 10°)V{w)

(14 jwCy(10 x 10%))

H{w)

L w
s 1 : 3
k—ﬂ—-— H((u):( ) 14+ jwCy(10 x 107)

joo(! +j%) - C-(10 x 109/ Ga)(1 + jwCi(125 x 10%)

guating coefficients gives

. . : %
— = (125 x 10Y). — = (310 x 10%), e @ :
20 i b ) 500 2(10 x ). and Ca10 % 109 4

1
— 01 puFand C; = ————— =02 uF

Lo s e =
' TR0(125 x 10°) S00(10 x 10%)

EXAMPLE 13.3-3 Bode Plot of a Circuit i\%
{ ,.t_').nsider the circuit shown in Figure 13.3-8a. The input to the circuit is the voltage of the voltage source, vi(f).
output is the node voltage at the output terminal of the op amp, v, (f). The network function that represents this
Vilw)
Vilw)

H(w) =

’ "go_fuﬁon
, ’gﬁw network function provides a connection between the circuit and the Bode plot. We can determine the
i ,ﬁlnction from the Bode plot, and we can also analyze the circuit to determine its network function. The values

#icapacitances are determined by equating the coefficients of these two network functions.




@ * Three-Phase Circuits

Derk Tk

Quatt tom t‘-{-

(b}

(c)

FIGURE 12.6-1 (a) A Y-to-A circuit. (b) the equivalent Y-t0-Y circuit, and (c) the per-phase equivalent circuit
equivalent Y-to-Y circuit where

m

The circuit shown in Figure 12.6-1a is a balanced Y-to-A circuit. Figure 12.6-1b shows the

Zy
y = —
R
This Y-to-Y circuit can be analyzed using the per-phase equivalent circuit shown in Figure
12.6-1c.
cH EXAMPLE 12.6-1  Per-phase Equivalent Circuit
—IIOZO Vrms, V., = 110
fhected load

120" V rms.and V. = 110 /120" V rms. The line impedances are each Zy = 10 +
. The impedances uftm A-connected load are each Z = 75 + j225 Q. Determine the phase currents in the A-
ﬂon

fire 12.6-1a shows a balanced Y-to-A three- phase circuit. The phase voltages of the Y-connected source are

The impedances of the halanced equivalent Y-connected load are

fvert the A-connected load to a Y-connected load using the A-to-Y transformation summarized in Table 12.4-1.

_ 75+ 4215
G o Lol B

=25+ j75Q




Balanced Three-Phase Circuits  ° @

s per-phase equivalent circuit for the Y-to-Y circuit is shown in Figure 12.6-1c. The line current is given by

br 0.8 - 11\§)
cORRENT T, = Ye 1020 = 1.26 /—66° A rms i (12&?

Zi+Zy (104 5)+ (254475
.32 . 37°

ine current, 1,4, calculated using the per-phase equivalent circuit, is also the line current, L4, in the Y-to-Y ct
21l as the line current, 1,4, in the Y-to-A circuit. The other line currents in the balanced Y-to-Y circuit have s: _

e magnitude but differ in phase angle by 120" These line currents are

g = 1.26 /—186° Arms and I = 1.26/54" Arms

J, and returns to node n. The resulting KVL equation is
Vo = ZiIyg + Zylps + Vi

ause the circuit is balanced, Vn, = 0. Solving for I gives

Vo 110 /—120°

= : = 1.26 /—186° A ms
ZL+Zy  (10+ 5+ (25+j75)

Iy =

it differ in phase angle by 120°. -
“The line currents of the Y-to-A circuit in Figure 12.6-1a are equal to the line currents of the Y-to-Y circuit in Figg
.6-15b because thi Y-to-A and Y-to-Y circuits are equivalent.

_The voltagq(V an |n the per-phase equivalent circuit is

Van = LaZy = (1.26 /=66°)25 + j75)=99.6 /5" Vrms &

e voltage V an calculated using the per-phase equivalent circuit is also the phase voltage, Van, of the Y-to-Y circu
e other phase voltages of the balanced Y-to-Y circuit have the same magnitude but differ in phase angle by 1207
hese phase voltages are :

Ven =99.6 /=115 Vrms and Ven = 99.6 /1257 V rms

The line-to-line voltages of the Y-to-Y circuit are calculated as L ING -To—~LL VOLTAGE
S$3 -.‘-I\?.U' Vap = Van — Van =99.5 /5" =995 /—115" = 172 /35" V rms i
Ve = Van — Ven = 99.5. /= 115° — 99.5 /125° = 172 /—85° V rms
Vea = Vo — Van =995 /125" - 99.5 /5" = 172 /155" V rms

The phase voltages of a A-connected load are equal to the line-to-line voltages. The phase currents are

3 Vas 172 /35
l,\[; = = — =1(.727 /=36 A rms
Zy 75+ ,225 =

Vir 172 /=85

lH( = = ———— —=(.727 /—156° A rms
Zo | 75+ 225 e

Ve 172 /155 :
I 4 = ]( I e = = 0.727 guidd A rms - 5 U.AI.{L
A + , . gs.h

oL

Exercise [2.6-1 | pure 12 6-1a shows a balanced Y-to-A three-phase circuit. The
phase voltages of the Y -comnecled source are V', = 110 0 Virms, Vi, = 110 - 120 V rms,
and V. = 110 1200 V rms The hine impedances are cach Zy = 10 4 ;25 Q The impedances

*



Two-Wattmeter Power Measurement -+ m

fThe total average power delivered to the A-connected load in Figure 12.6-1a is

I
P =3Psp = 3Vaplag cos @ = 3(\/§Vp)ﬁ cos @ =3 Vpl cos @ (12.7-5)

In summary, the total average power delivered to the A-connected load in Figure 12.6-1a is
equal to the total average power delivered to the balanced Y-connected load in Figure 12.6-154.
frhat’s appropriate because the two circuits are equivalent. Notice that the information required
to calculate the power delivered to a balanced load, Y or A, is obtained from the per-phase

equivalent circuit.

| EXAMPLE 12.7-1  Power Delivered to the Load

.6-1a shows a balanced Y-to-A three-phase circuit. The phase voltages of the Y-connected source are’

&' rms, V, = 110 /~120° V rms, and V. = 110 /120° V rms. The line impedances are each Z; = 10 +j
edances of the A-connected load are each Z, = 75 + j225 2. Determine the average power delivered _

it was analyzed in Example 12.6-1. That analysis showed that
La = 1.26 /—66° A rms
| Van = 99.6 /5° V rms
average power delivered to the load is given by Eq. 12.7-3 as
(b) P = 3(99.6)(1.26) cos (5° — (—66°)) = 122.6 W i

-~ Exercise 12.7-1 Figure 12.6-1a shows a balanced Y-to-A three-phase circuit. The
 phase voltages of the Y-connected source are V, = 110 /0° V rms, V, = 110 /—=120° V rms,
and Vo = 110 /120° V rms. The line impedances are each Z; = 10 +725 Q. The impedances
ofthe A-connected load are each Z, = 150 + ;270 Q. Determine the average power delivered
to the A-connected load.

Intermediate Answer: 1,5, = (.848 /=625  Armsand Voy = 87.3 /—1.5° V rms
Answer: P=1079W
L .

12.8 Two-Wattmeter Power Measurement

For many load configurations, for example, a three-phase motor. the phase current or voltage
I8 inaccessible. We may wish to measure power with a wattmeter connected to each phase.
However, since the phases are not available, we measure the line currents and the line-to-line
voltages. A wattmeter provides areading of I /| cos# where }'; and /, are the rms magnitudes
and ¢ is the angle between the line voltage. V., and the current. I. We choose to measure Vi and
{1, the line voltage and current, respectively We will show that two wattmeters are sufficient
to read the power delivered to the three-phase load, as shown in Figure 12.8-1. We use c¢c to
denote current coil and 1 to denote voitage coil
Wattmeter | reads

[)| = j',\H[;\. i ”‘ {]28']}

and wattmeter 2 reads
f}‘1 = Fondy cos s (12.8-2)
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wish to correct the pf so that pfc = 0.95 lagging. Then, we use Eq. 11.6-5 as follows:
1002 + 1007

=-=2979Q
X¢ = 100 tan (cos—1 0.95) — 100
jacitor required is determined from
1
— = Vs
CUC C
re, since w = 377 rad/s,
1 -1
== =89 uF
C ==X~ 377(-2979) H
ish to correct the load to pfc =1, we have
2 x 10*
o= - = —200

100 tan (cos~! 1) — 100
acitor required to correct the power factor to 1.0 is determined from
C= = — 1334F
wXc  377(-200)
e the uncorrected power factor is lagging, we can alternatively use Eq. 11.6-7 to determine C. For exa
that pfc = 1. Then 8¢ = 0°. Therefore,

100
wC = m(ta,nea — tan Oc) = (5 x 107%)(tan (45°) — tan (0°)) = 5 x 107
x
5x 1073
G222 o 13
377

pected, this is the same value of capacitance as was calculated using Eq. 11.6-5.

EXAMPLE 11.6-3 Complex Power %

e mput to the circuit shown in Figure 11.6-6a is the voltage of the voltage source,
ve(t) = 7.28 cos(4t +77")V

V‘e output is the voltage across the inductor,
33 vo(f) = 4.254 cos (4t +311") V

- etermine the following:

i
3

HZ.)"_"The average power supplied by the voltage source
) The average power received by the resistor

£) The average power received by the inductor

P
) The power factor of the impedance of the series connection of the resistor and inductor

< o

3 9] + Vplw)

\
+
)B4 H <) ) o v, (w)

g FIGURE 11.6-6

ew)
G & The circuit considered in Example 11.6-3 represented (a) in the W

(a) (h) domain and (h) in the frequency domain.




@ « AC Steady-State Power

put voltage 1s sinusoid. The output voltage is also sinusoid and has the same frequency as the input voltagg
tly the circuit has reached steady state. Consequently, the circuit in Figure 11.6-6a can be represented in tly
ncy domain, using phasors and impedances. Figure 11.6-6b shows the frequency-domain representation of thy

e phasors corresponding to the input and output sinusoids are

°
Vs(w) =7.28 /77" V Vo269 L_‘ﬂ
Vo(w) =4.254 /311" V

gurrent I(w) in Figure 11.6-6b is calculated from V,(w) and the impedance of the inductor using Ohm’s law:

| 40
oyl AW I 0 s 5o /21°A 4 %
J216  2.16 /90° 2.16
umx;

we know I(w), we are ready to answer the questions asked in this example.

average power supplied by the source is calculated from K(w) and V(w). The average
of the source is given by

@———m(“’yu(‘”” cos(/Vy(w) — /Iw)) = “—_(7‘28);1'969) cos (77° — 221°)
= 7.167 cos(—144°) = —S 8 W (11.6-8)

ce that l{w) and V(w) adhere to the passive convention. Consequently, Eq. 11.6-8
ves the power received by the voltage source rather than the power supplied by the
ltage source. The power supplied is the negative of the power received. Therefore, the

@:Jwer supplied by the voltage source is

|P5=5.8W “

The resistor voltage, Vg(w), in Figure 11.6-6b is given by
Vr(w) = R Kw) = 3(1.969 /221") = 5.907 221" V

The average power received by the resistor is calculated from () and Vi (w):

5.907)1.969
‘ l((f)}}) = : L 24 cos (221 —221")

— 3
= 5.8 cos(0 ]:iS.HE ‘ (11.6-9)

Notice that I(«) and Vy(w) adhere to the passive convention. Consequently, Py is the
power received by the resistor, as required.

Alternately, the power received by a resistor can be calculated from the current I(w)

- and the resistance, R. To see how, first notice that the voltage and current of a resistor are

related by

Pr = I_‘L(.QMM(L(“( \_R(,(i)} —=

Y

Vi(w)| = R|l{w)|

Vr(w) = Rliw) =» IV Vilw) = R!_Il(m}ll Iw)) = | \'_R(_m) - l(_m_)

Substituting these expressions for IVpte) and  f g(w) mto g 11.0-9 gives

REG)) H(en)] Rl
Pl = = LR st /Tt — o = ) (:|

¥

-

I 1.969)°
LS




Power Factor @

average power received by the inductor is calculated from I{w) and V (w):

'4.254)(1.969 .
= w COS(-/Vo(CU) = i]((u)) = (-—~5+—) cos(311° —221°)
= 4.188 cos5(90") =0 W (11.6-10)

' phase angle of the inductor voltage is always 907 greater than the phase angle of the
ductor current. Consequently, the value of average power received by any inductor is

e power factor of the impedance of the series connection of the resistor and induc-
jar can be calculated from I{(w) and the voltage across the impedance. That voltage is
V() + Vo(w), which is calculated by applying Kirchhoff’s voltage law to the circuit in
Figure 11.6-6b:

Vr{w) + Vo(w} + Vi(w) =0
Vr(@) + Vo(w) = —Vi(w) = —7.28 /7T

(1 /180°)(7.28 /77°)
= 7.28 /257"

Ii

ow the power factor is calculated as

pf = cos(/(Vr(w) + Vo(w) — /I(w)) = cos(257° — 2217) = 0.809 \"‘33""‘3

- The power factor is said to be lagging because 257 — 221 =36 > 0. =
_ Average power is conserved. In this example, that means that the average power supplied
by the voltage source must be equal to the sum of the average powers received by the resistor
and the inductor. This fact provides a check on the accuracy of our calculations.

If the value of V(@) had not been given, then I{w) would be calculated by writing and
solving a mesh equation. Referring to Figure 11.6-6h, the mesh equation is

3Hew)+ 216 Ww) +7.28 /77 =0

2 ; Solving for I{w) gives
3
4 ) =728 /77" (1 /180°07.28 /77)
1) = - = -
‘ 3+ 2.16 3.697 36
{(1)7.28)

— 1RO+ 77 — 36 = 1969 221 A
3697 — o

as before.

Exercise 11.6-1 A circurt has a large motor connected to the ac power lines
[0 =(2m)60 = 377 rad/s] The model of the motor is a resistor of 100 € in series with an
inductor of 5 H. Find the power tactor of the motor.

Answer: pf =0.053 lagging

Exercise 11.6-2 A Circunt has a toad impedance 7 = 50 + 80 2. as shown in Figure
11.6-5. Determine the power factor of the uncorrected circuit. Determine the impedance Z;
required to obtain a corrected power factor of 1.0

Answer: Z, = —j111.25Q
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The capacitor voltage, V. (w), in Figure 10.9-5b is given by

V. w) = V(o) — V(w) = 7.68/45° - 1.59/125°
= (5.23 + j5.62) — (=091 + 1.30)
= (5.23 + 0.91) + j(5.62 — 1.30)
= 6.14 + j4.32
= T.51/.35

The impedance of the capacitor is given by

1 Vaw) 151135
3¢ 7 e 1.59/125°

=4.72 /=90

Solving for C gives

= - _ERD. _gh06F

24.72/-90°)  2(4.72/=90°)

‘More Problems and Worked Examples Are in the Electric Circuit Study App'ets

Try It Yourself!

Example 10.9-4

Consider the circuit shown m Figure 10.9-6a. The input to the circuit is the voltage of the voltage source, 1
the cutput is the voltage across the 4-€2 resistor, v, (7). When the input is v (1) = 8.93 cos (2t + 54°) V, the cor
ing output 1s v ()~ 383 cos (21 + 83) V. Determine the voltage across the 9-€) resistor, v, (1), and the vah

capacitance, €. of the capacttor.

{ f
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Solution
The input voltage 15 @ sinusoid. The output voltage is also sinusoid and has the same frequency as the inpul

Apparently the circunt has reached steady state, Conseguently, the cireuit in Figure 10.9-6a can be represented 1
quency domain, using phasors and impedances. Figure 10.9-65 shows the frequency-domain representation of U
from Figure 10.9-6a The voltages ¥V (). ¥ (w) and ¥ (e in Figure 10.9-6b are the phasors corresponding
v, and v (0 trom Figare 10.9-6a. The capacitor and the resistors are represented as impedances in Figure
The impedance of the capacitor s =7 /w C = =j1/2C where 2 rad/s is the value of the frequency of v (1).

The phasors corresponding to the mnput and output sinasoids are
Viw) = 893/ 54V

and Viiw) = 383,83V




o . Sinusoidal Steady-State Analysis

First. we calculate the value of V (w). Apply KVL to the mesh in Figure 10.9-6b that consists of the two resistors

(G«) the voltage source to get

V,(w) = V(w) - V(w) = (3.83/83") - (8.93/54%) |
(0.47 + j3.80) - (5.25 + j7.22) ‘

I

= —4.78 — j3.42 |
= 5.88/216° !
- ‘ \ ]
The voltage across the 9-€) resistor, v,(1), is the sinusoid corresponding to this phasor . =
c g a .o d - .)

- s,gvcpa_&t -k.) v,(1) = 5.88 cos (2r + 216°) V | Pw -\

i =587, coxC & e
:' Qb) Wescan‘ etermi %\? vﬁue’ 3 Ll-g capacitance by applying Kirchhoff's current law (KCL) at node b in Figure 10.9-

V.(w) Viw) V,(w)
+ + =0
N 9 4 B3
T

V,(w) - Voiw)

=0

(J2O)V, (@) +

Solving this equation for j2C gives

_ 4V (w) + 9V, (w)
=36V, (w)

j2C

Substituting the values of the phasors V (w) and V (w) into this equation gives

| 4(=4.78 - j3.42) + 9(0.47 + j3.80)
- ~36(5.88/216%)
“14.89 + 20.52
~36(5.88/216")
25.35/126°
(36,180 )(5.88/216" )
= 223 a6t (<180° + 216
(36)(5.88) '

= 0.120,90°
= 40120

j2¢

: . SRR © 1 .
Theretore the value of the capacitance 1s € = & ke .06 = 60 mF. 1

“

'/"‘ Try It Yourself! More Problems and Worked Examples Are in the Electric Circuit Study Applets

Exercise 10.9-1 Determine the steady-state voltage v(r) for the circuit of Fig

_‘_"_? - "H'SCCS 1091,
Hint: Analvse the circuit m the frequency domain, using impedances and phasors. Use vt

' T—
| ® l 3 ‘-3‘ Cs age division, twice Add the results.
| @ Answer: vif) = 358 cos (51 + 47.2°)V
| a 3.349 o | i
| e T dnc
3.9 1> ¥+ 72C




