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Transfer Functions and Frequency Response

H. S. Sahambi
∗

Unless otherwise mentioned, all problem solved here are from [1].
If the assignment consisted of examples from the textbook, see the book for the solutions.

(1) Problem 14.01.

Solution:

Given Vi = 3∠30◦ and H(s) below, we are to find Vo. Since

H(s) =
Vo(s)

Vi(s)

∴ Vo(jω) = Vo = H(s)Vi(s)|s=jω

= H(jω)Vi (1)

1.

H(s) =
1

s + 1

=⇒ H(jω) =
1

jω + 1
=

1√
ω2 + 1

∠− tan−1 ω

∴ Vo =

(
1√

ω2 + 1
∠tan−1 ω

)

(3∠30◦)

=
3√

ω2 + 1
∠30◦ − tan−1 ω (2)

2.

H(s) =
5s

s + 1

=⇒ H(jω) =
j5ω

jω + 5
=

5ω√
ω2 + 25

∠90◦ − tan−1 ω
5

∴ Vo =

(
5ω√

ω2 + 25
∠90◦ − tan−1 ω

5

)

(3∠30◦)

=
15ω√

ω2 + 25
∠120◦ − tan−1 ω

5 (3)

∗To report any errors in this document, send email to the author at hsDOTsahambiATmcgillDOTca.
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3.

H(s) =
10(s − 1)

s3 + 2s2 + s + 2
=

10(s − 1)

(s2 + 1)(s + 2)

=⇒ H(jω) =
10(jω − 1)

(jω2 + 1)(jω + 2)
=

10
√

ω2 + 1

|1 − ω2|
√

ω2 + 4
∠(tan−1(−ω) − tan−1 ω

2
− ∠(1 − ω2))

∴ Vo =

(

10
√

ω2 + 1

|1 − ω2|
√

ω2 + 4
∠(tan−1(−ω) − tan−1 ω

2
− ∠(1 − ω2))

)

(3∠30◦)

=
30
√

ω2 + 1

|1 − ω2|
√

ω2 + 4
∠(30◦ + tan−1(−ω) − tan−1 ω

2
− ∠(1 − ω2)) (4)

where

∠(1 − ω2) =

{

0◦ if 1 − ω2 >= 0

180◦ otherwise

(2) Problem 14.10.

Solution:

First, represent the circuit in s-domain and assume the current source to be Is(s). We will replace
this with the actual given current source when we find the output using the transfer function.

In the s-domain circuit, applying KVL at the top node of the resistor, whose nodal voltage is V,
gives

I(s) = Is(s) +
rI(s) − V(s)

s
.

Substituting I(s) = V(s)/1 (obtained from the circuit), and simplifying, the above equation gives

(s − r + 1)V(s) = sIs(s)

∴ H(s) =
V(s)

Is(s)
=

s

s + 1 − r

∴ H(jω) =
jω

(1 − r) + jω

=
ω∠90

√

(1 − r)2 + ω2∠tan−1( ω
1−r

)

=
ω

√

(1 − r)2 + ω2
∠90 − tan−1( ω

1−r
) (5)

Now, the phasor of the given input is I(jω) = 1∠0 with ω = 10 rad/s. Thus the output phasor
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given this input is

V(j10) = H(jω)I(jω)|ω=10 (6)

=
ω

√

(1 − r)2 + ω2
∠90 − tan−1( ω

1−r
) · 1∠0

∣
∣
∣
∣
∣
ω=10

(7)

=
10

√

(1 − r)2 + 100
∠90 − tan−1( 10

1−r
) · 1∠0 (8)

∴ v(t) =
10

√

(1 − r)2 + 100
cos

(

10t + 90 − tan−1

(
10

1 − r

))

(9)

=
10

√

(1 − r)2 + 100
sin

(

10t − tan−1

(
10

1 − r

))

. (10)

For stability, the poles must lie on the left hand side of the complex frequency plane. For this to
be true in the above transfer function, r < 1.

(3) Problem 14.11.

Solution:

Given the circuit, redrawing it in s−domain, the transfer function is found to be

H(s) =
I(s)

Vs(s)
=

(1 + 2α)s

4(1 + 2α)s2 + 2s + 4
. (11)

The input, in phasor form, is Vs = 1∠−90 with ω = 2 rad/s. Given this input, the output is

I = H(jω)|ω=2Vs (12)

= j
2(1 + 2α)

16(1 + 2α) + j4 + 4
· 1∠−90 (13)

=
2(1 + 2α)

(−32α − 12) − j4
(14)

=
2(1 + 2α)

√

(−32α − 12)2 + 16
∠− tan−1 16

−32α−12 . (15)

The system is stable as long as it’s roots are on the left hand side. It is easy to show that for the
poles of the given transfer function to be ≤ 0, the condition is

α ≤ −1

2

(4) Problem 14.21.
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Solution:

Redrawing the circuit in s-domain and using mesh analysis, it is easy to show that

H(s) =
I(s)

Is(s)
= 0.5

s

s + 3

4

Hence the circuit has a single break break frequency at ω = 3/4 rad/s.

(5) Problem 14.26.

Solution:

First note that the given Bode gain plot has a number of break frequencies. We will examine
segments between each consecutive break frequency. Recall that a zero of multiplicity r increases

the slope of the gain plot by 20r dB/dec., and a pole of multiplicity r decreases the slope by 20r
dB/dec.

1. The first segment starts at ω ≈ 0 with a slope of +60 dB/dec. The positive slope indicates
that it is dues to a zero, and since the line is starting from 0, that zero is at the origin. The
multiplicity of this zero is 60/20 = 3. Therefore, we have a factor of s3 in the numerator.

2. The second segment starts from ω = 2 and the slope changes from +60 to −80 dB/dec. This
reduction in slope indicates a pole at 2 with a multiplicity (60 − −80)/20 = 7. Hence, we
have a factor of (s + 2)7 in the denominator.

3. The third segment, from ω = 10, has a slope of 0. Since the slope has increased from the
previous segment, this means there is a zero at ω = 10 of multiplicity (0 − −80)/20 = 4.
Thus the transfer function has a factor of (s + 10)4 in the numerator.

4. Similarly, as indicated by the fourth segment, there is a factor of (s+100)3 in the numerator
of the transfer function.

5. The fifth segment indicates that the transfer function has a factor of (s + 200)3 in the
denominator.

6. The last segment indicates that there is a factor of (s + 500)2 in the numerator.

Hence the transfer function is

H(s) = K
s3(s + 10)4(s + 100)3(s + 500)2

(s + 2)7(s + 200)3

where K is some constant which we do not know since the vertical axis is not labelled.

(6) Problem 14.33.
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Solution:

1. Based on the given transfer function, we will plot the Bode gain plot of

|H(jω)|(dB) = 20 log | − 10| − 20 log |jω − 10|
From the above equation, it is clear that we have a break frequency at ω = 10.

Figure 1: Bode gain plot of the given transfer function. The plot of the factors is shown
with dashed lines. The solid line shows the overall gain plot. The smooth curve shows the
corrected gain plot.

2. Based on the given transfer function, we will plot the Bode gain plot of

|H(jω)|(dB) = 20 log |3| − 20 log |jω|

Figure 2: Bode gain plot of the given transfer function. The plot of the factors is shown
with dashed lines. The solid line shows the overall gain plot. The smooth curve shows the
corrected gain plot.
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3. Based on the given transfer function, we will plot the Bode gain plot of

|H(jω)|(dB) = 20 log |jω + 1| − 20 log |jω + 2|

From the above equation, it is clear that we have a break frequency at ω = 1 and another
one at ω = 2.

Figure 3: Bode gain plot of the given transfer function. The plot of the factors is shown
with dashed lines. The solid line shows the overall gain plot. The smooth curves show the
corrected gain plots.

(7) Problem 14.34.

Solution:

1. The Bode gain plot is of the following function:

|H(jω)|(dB) = −20 log |jω + 1| − 20 log |jω + 20|

The gain plot is shown below
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Figure 4: Bode gain plot of the given transfer function. The curve in red shows the complete
transfer function; the dashed part is the approximate gain plot and the solid part is the
corrected gain plot.

Based on the given transfer function, we will plot the Bode phase plot of

∠H(jω) = tan−1 0

1
︸ ︷︷ ︸

blue dashed

− tan−1 ω

1
︸ ︷︷ ︸

2

− tan−1 ω

2
︸ ︷︷ ︸

3

The phase plot is given below.

Figure 5: Bode phase plot of the given transfer function. The plot of the factors is shown
with dashed lines. The solid line shows the overall gain plot. The smooth curve shows the
corrected gain plot.
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2. The given transfer function be shown to be

|H(jω)|(dB) = 20 log | − 100| − 20 log |(102ω2) + j2 · 2

20
· 10ω|

The corresponding gain plot is given below.

Figure 6: Bode gain plot of the given transfer function. The curve in red shows the complete
transfer function.

Based on the given transfer function, we will plot the Bode phase plot of

∠H(jω) = tan−1 0

−100
︸ ︷︷ ︸

blue dashed

− tan−1 2τωnω

ω2
n − ω2

︸ ︷︷ ︸

red dashed

Figure 7: Bode phase plot of the given transfer function. The black dashed line shows the
over all phase plot.
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3. The transfer function can be simplied to

|H(jω)|(dB) = 20 log |jω − 41.16| + 20 log |jω + 40.5| − 20 log |jω + 1| − 20 log |jω + 1000|

The corresponding gain plot is given below.

Figure 8: Bode gain plot of the given transfer function. The curve in red shows the complete
transfer function.

Based on the given transfer function, the phase is given by

∠H(jω) = tan−1 0

−3
︸ ︷︷ ︸

1

+ tan−1 ω

−41.16
︸ ︷︷ ︸

2

+ tan−1 ω

40.69
︸ ︷︷ ︸

3

− tan−1 ω

1
︸ ︷︷ ︸

red4

− tan−1 ω

1000
︸ ︷︷ ︸

black4

Page 9



Figure 9: Bode phase plot of the given transfer function. The plot of the factors is shown
with dashed lines. The solid line shows the overall gain plot. The smooth curves show the
corrected gain plots.

(8) Prob. 14.35.

Solution:
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1.

Figure 10: Bode gain plot of the given transfer function. The plot of the factors is shown
with dashed lines. The solid line shows the overall gain plot. The smooth curves show the
corrected plots.

2.

Figure 11: Bode gain plot of the given transfer function. The plot of the factors is shown
with dashed lines. The solid line shows the overall gain plot. The smooth curves show the
corrected plots.
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3.

Figure 12: Bode gain plot of the given transfer function. The plot of the factors is shown
with dashed lines. The solid line shows the overall gain plot. The smooth curves show the
corrected plots.

(9) Problem 14.36.

Solution:

The question asks you to draw the three impedances in complex coordinates as a function of the
resonant frequency of the circuit.

In general, whenever you encounter such a problem, the first thing to do is, obviously, to determine
what is the resonant frequency ωr. To do this, you need need to work out the transfer function first.
Resonant frequency is the frequency where the gain of the transfer function attains it’s peak. Also,
there must be complex factors in the transfer function for resonance to occur. To find ωr, obtain
the expression of the gain, |H(jω)|, and determine the frequency where the gain is maximum. This
can be done either by differentiating the gain w.r.t. ω and equating the derivative to zero to obtain
ωr, or by writing the gain in such a way that you have 1/ω terms in it. In this form, it might be
possible to easily see what value of ω gives the maximum value of the gain.

After determining the resonant frequency, the solution to the problem is straight forward. The

resonant freuqency of a series RLC circuit is ωr =
√

1

LC
(I strongly recommend that you verify this

by working it out yourself, it is explained in Ch. 14 [1]). For this problem, another way to obtain
the resonant frequency is to note that at this frequency, the impedance of the ciruit is minimum,
which is possible only when the imaginary part of the impedance is zero (or when the angle of
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the impedance of the circuit is zero). Either of these conditions result in the expression for the
resonant frequency above.

So, once we know that in this case ωr =
√

1

LC
, and also that ZR = R, ZL = jLω and ZC = −j 1

Cω
,

the solutions is to draw the impedances show in Table 1. Note that at ω = ωr, the reactive
impedances cancel each other out.

Table 1: (prob. 14.36) Impedances as a function of ωr

ω = 1

10
ωr ωr 10ωr

ZR = R R R

ZL = j 1

10

√
L
C

j
√

L
C

j10
√

L
C

ZC = −j10
√

L
C

−j
√

L
C

−j 1

10

√
L
C

(10) Problem 14.37.

Solution:

This problem is similar to the previous one (p. 14.36). In this case however, we are going to plot
the admittances.

The method to obtain ωr is the same as before. Find the transfer function (let the output be the
voltage and the input be the current), obtain the gain of the transfer function and determine the
resonant frequency from there (the frequency at which the gain peaks). If you work this out, you

will obtain ωr =
√

1

LC
(this happens to be the same as that of the series RLC circuit).

Also, the admittances are YR = 1

R
, YL = −j 1

Lω
and YC = jCω. The impedances as a function of

ω = ωr are shown in Table 2.

Table 2: (prob. 14.37) Admittances as a function of ωr

ω = 1

2
ωr ωr 2ωr

YR = 1

R
1

R
1

R

YL = −j2
√

C
L

−j
√

C
L

−j 1

2

√
C
L

YC = j 1

2

√
C
L

j
√

C
L

j2
√

C
L

(11) Problem 14.38.

Solution:

This is a design problem and it entails using some relationships to come up with some practically
feasible values of components to construct the circuit.

The design criteria given are the resonant frequency, ωr, and bandwidthB, of a series RLC circuit.
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In general, you would need to find the expression of the resonant frequency and the bandwidth for

a given circuit. In this case however, we already know that ωr =
√

1

LC
and that B = R

L
. Therefore

ωr =

√

1

LC
= 50 =⇒ 1

LC
= 2500,

and

B =
R

L
= 4 =⇒ R = 4L

We have three unknowns but only two equations. We need to make a reasonable guess for one of
the circuit elements and we can then evaluate the other two elements from the above relations.
Since a practical inductor has a resistance of it’s own, we could start with a value for L or C and
come up with the two values. The final resistance to be used can then be determined by taking
the resistance of the inductor into account. For C = 1600µF, using the above two relations we get
L = 2.5H and R = 10Ω where R is the total resistance in the circuit.

Similarly, repeat the same exercise for a parallel RLC circuit. In this case, the expression for the
bandwidth is different (see the table in Ch. 14 of [1]).

(12) Problem 14.39.

Solution:

This design problem is similar to the previous one (14.38). In this case however, we are given
the quality factor and the resonant frequency. For a series circuit, quality factor is given by

Q = ωr

B
= 1

R

√
L
C

. Following a reasoning similar to the one given in the previous problem’s solution,

come up with a reasonable set of R, L and C values. Repeat for the parallel configuration.

(13) Prob. 14.44

Solution:

Redraw and relabel the circuit in s-domain. Assuming ideal op-amp and applying KCL at the
inverting node we obtain

V1(s) − V0(s)
1

1+s

+
V1

1 + s
= 0

...

Vo(s)

V1(s)
=

s2 + 2s + 2

(1 + s)2
(16)
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Figure 13: Bode gain plot of the given transfer function. The plot of the factors is shown with
dashed lines. The solid line shows the overall gain plot. The smooth curves show the corrected
plots.
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