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Unless otherwise mentioned, all problem solved here are from [1].
If the assignment consisted of examples from the textbook, see the book for the solutions.

(1) Excercise 14.4.1

Solution:

Note that the given equation is the one whose solution will provide the upper and lower cut off
frequencies.
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(2) Excercise 14.4.2.

Solution:

Solution to the following equation gives the upper and lower cut off frequencies:
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The above quadratic equation has four solution, two for each of the plus and minus sings with the
last term. Note that, R > 0, C > 0, L > 0, and only positive solutions are valid.

With the plus sign, the solutions are:

ω1,2 =

R
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√

R2

L2 + 4
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2

In the above equation, only the plus sign gives the positive solution:

ω1 =
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2

With the negative sign of the original equation, the solutions are:

ω3,4 =
−R

L ±
√

R2

L2 + 4
LC

2

In this case also, only the plus sign gives the positive solution:

ω3 =
−R

L +
√

R2

L2 + 4
LC

2

Hence, the bandwidth is

B = ω1 − ω3 =
R

L

(3) Excercise 14.4.3.

Solution:

For a series RLC circuit, we have ωr = 1/
√

LC, B = R/L and Q = R
√

L
C . Given C = 100 µF

gives L = 1H. Thus, R = 5000 Ω.

(4) Excercise 14.6.1.
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Solution:

From the given figure

H(s) =
VL(s)

Vin(s)
=

s

s + R/L

Thus,

H(jω) =
jω

jω + R/L

Thus, the magnitude of the transfer function is

|H(jω)| =
ω

√

ω2 + (R/L)2
=

1
√

1 + R2

ω2L2

If the Bode gain plot is drawn for this transfer function, it will show that the the system is a high
pass filter. Moreover, from the magnitude of the transfer function it is clear that the magnitude
reaches one as ω → 0, and it reaches zero as ω → 0. Thus it is a high pass filter with the maximum
gain of one.

For the half power frequency, we note that power is propotional to the square of the magnituded,
thus, the maximum power is the square of the maximum magnitude. Hence, if the half power is
at ω = ωc, then

|H(jωc)|2 =
1

2
|H(jω)|2max =

1

2
1

1 + R2

ω2
cL2

=
1

2

which gives ωc = R/L.

Similarly, filter given by

H(s) =
VR(s)

Vin(s)

can be shown to be a low pass filter with ωc = R/L.

(5) Excercise 14.6.2.

Solution:

The given transfer function is

H(s) =
s2

s2 + 2
√

2ωns + ω2
n

Dividing both sides by s2, we obtain

H(s) =
1 + 2

√
2ωn

s + ω2
n

s2
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Thus, the frequency transfer function is

H(jω) =
1
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n
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1
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√
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ω

The gain of the frequency transfer function is then
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1
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2
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From the above equation, it is clear that the gain decreases as ω decreases, and the gain increases
as ω increases. Thus the system is a high pass filter.

This can also be shown by draswing a Bode gain plot (by assuming some value for the natural
frequency ωn).

Now, the maximum gain occurs when ω = 0, which is

|H(jω)|max = |H(jω)|ω=0 = 1

The half power frequency is thus the solution to the following equation

|H(jω)|2 =
1

2
|H(jω)|max =

1

2
× 1

1
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ω2

)2
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2
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· · ·
ω4 − 6ω2

nω2 − ω4
n = 0

The solution to the above quadratic equation is ω = 2.48ωn (after discarding the negative solutions).
This is thus the half power frequency of the given transfer function.

(6) Problem 14.23.

Solution:

The exact Bode gain plot for the given factor is given by

|Hjω|(dB) = 20 log |jω − p|

and the apporoximate Bode gain plot is given by two equations

|Hjω|(dB) = 20 log |p|; ω << |p|
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and
|Hjω|(dB) = 20 log |ω|; ω >> |p|

Note that there is a difference between the exact and the two approximate curves, as shown in the
figure above. The difference is maximum at ω = |p| and this maximum value is 3 dB. At we move
away from this break frequency in either direction, the difference gradually decreases. Thus, there
are two differences of the same magnitude on either side of the break frequency. One is between
the exact plot and the first approximate plot and the second is between the exact plot and the
second approximate plot. Let the difference be δ at ω1 (for the first case) and at ω2 (for the second
case).

For ω1

δ = 20 log |jω1 − p| − 20 log |p|

= 20 log
|jω1 − p|

|p|

= 20 log

√

ω2
1 − p2

p

= 10 log
ω2

1 − p2

p2

· · ·

ω1 =
(

10
δ

10 − 1
)

|p|

Similarly, we can show for ω2 using the second part of the approximate curve, that

ω2 =
(

10
δ

10 − 1
)−1/2

|p|

To determine how many decades is ω away from |p|, this is given by log ω
|p| .

Using the above equations, values for ω1 and ω2 for the given values of δ are given in the table
below.
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Table 1: Prob. 14.23
δ ω1 (r/s) ω2 r/s decades away from |p|

3/2 0.642|p| 1.56|p| 0.192

1 0.509|p| 1.97|p| 0.298

1/2 0.349|p| 2.86|p| 0.457

0.1 0.153|p| 6.55|p| 0.816

(7) Problem 14.24.

Solution:
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