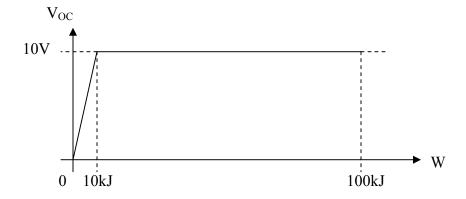

ECSE 200: Fundamentals of Electrical Engineering

Assignment 2

Winter 2006

Question 1

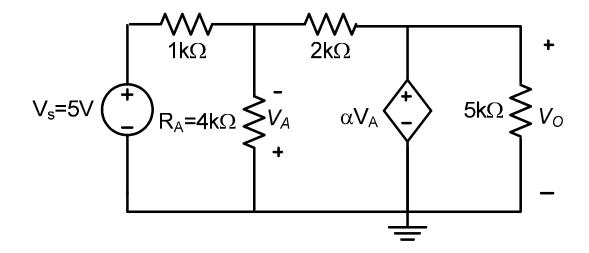
A heating coil is rated 600W at an input voltage of 120V DC. A variable resistor is inserted in series with the coil in order to control its power. What range should R have for the power consumption in the coil to range from 150W to 600W?



Question 2

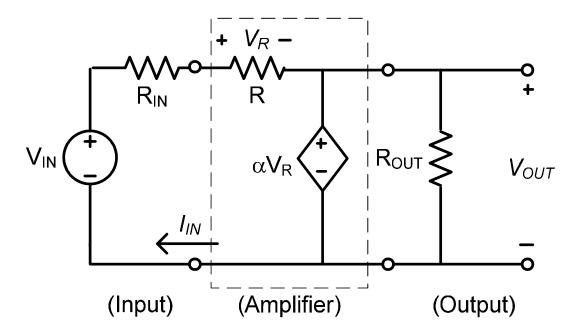
Consider a linear battery that is characterized by the stored energy versus open-circuit terminal voltage plot given below. Assume that the battery is fully charged (100kJ) and that it has negligible open-circuit losses. A careful experiment has shown that if this battery is connected directly to an OHMIC 2Ω resistor, the HEAT output from the resistor will be CONSTANT for exactly 5 hours, and then it will start to REDUCE.

- a) Calculate the "internal resistance" value(s) that could be used to model this battery.
- b) Find how much time it would take for this battery to discharge from 100kJ to 10kJ, if an IDEAL SHORT-CIRCUIT was connected across the battery terminals (instead of 2Ω).


Hint: Think about how you plan to solve this problem before you start!

Page 1 of 3

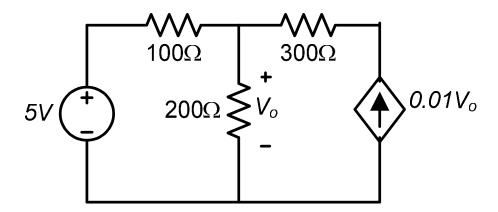
Question 3


Consider the linear circuit shown below and answer each of the following questions:

- a) Find an expression for the value of the voltage V_A , specified as a function of α .
- b) Find the voltage gain of the circuit, defined by V_o/V_s , in the limit as $\alpha \rightarrow \infty$.
- c) Find the power supplied by the controlled source in the limit as $\alpha \rightarrow \infty$.

Question 4

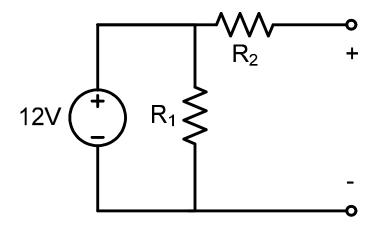
Consider the three-stage amplifier circuit provided below, and answer the following:



a) Find an expression for the current I_{IN} , in terms of the parameters V_{IN} , R_{IN} , R and α .

- b) Find an expression for the voltage gain V_{OUT}/V_{IN} , in terms of R_{IN} , R and α .
- c) Find the limit voltage gain V_{OUT}/V_{IN} that results when $R \rightarrow \infty$ and $\alpha \rightarrow \infty$.

Question 5


Consider the circuit provided below and answer each of the following questions:

- a) Prove that the controlled source acts like an ohmic device.
- b) Find the equivalent resistance of the controlled source.
- c) Find the power <u>supplied</u> by the controlled source.

Question 6

Consider the circuit model for a storage battery shown below. Calculate the values of R_1 and R_2 that make the battery dissipate 50mW under open-circuit conditions, and 48W under short circuit conditions.

