Tutorial 1: Number Representations

ECSE 322: Computer Engineering

Winter 2008

TA: Robert Rolnick
E-mail: Robert.Rolnick@mail.mcgill.ca

Tutorial 1: Number Representations

1. Number Systems

2. USASI
3. IEEE 754

What is a Number System?

$>$ A number system maps number (integers, reals) to bits.
$>\operatorname{In}$ Ecse 221 (ICE) you saw how to represent integers. (E.g. $010110_{2}=22_{10}$)
$>$ How do you represent real numbers using bits? (E.g $3 / 4,1.232,1.78 * 10^{23}$, etc.)

Representing Real Numbers

$>$ Balancing the precision and range of real numbers is difficult.
$>$ In scientific notation precision is the number of significant figures in your calculation, and range would be the possible exponents.
$>$ Also, we need a bit to represent the sign of your number.
$>$ The solution is to divide a number into 3 pieces: sign, exponent, and mantissa.
$>$ The sign needs only 1 bit, but the number of bits used for the exponent and mantissa will determine the precision, accuracy, and range of your representation.
$>$ In this course, we will be typically dealing with 32-bit representations, although virtually all consumer PCs on the market today have shifted to 64-bit processors.

The USASI Representation

$>$ 1-bit used for sign ($0=$ positive, $1=$ negative.)
$>$ 7-bits used for exponent, which is stored with a bias of +64 .
>16 is the base of the exponent.
$>$ 24-bits used for the mantissa.
$>$ Hidden bit normalization is NOT used.

Sign	Exponent	32-bits	
(1-bit)	(7-bits)		Mantissa

An Example of USASI Conversion

Convert: -204.5625 into its USASI form
$>$ Step 1: Check sign. It is negative, so the sign bit is 1 .
$>$ Step 2: Convert your number to binary. $204.5625_{10}=11001100.1001_{2}$
$>$ Step 3: Shift (four bits at a time) until all bits are left of the decimal point. $0.110011001001 * 16^{2}$
> Step 4: Pad your result, to get the 24-bit mantissa. In our example we get: 110011001001000000000000
$>$ Step 5: Get exponent by adding the bias (+64) to the power of 16. In our example we get: $2+64=66$.
> Step 6: Convert your exponent to binary ensure that it is 7 bits. $66_{10}=1000010_{2}$

$>$ Step 7: Combine to get our final result | 1 | 1000010 | 110011001001000000000000 |
| :--- | :--- | :--- |
| | | |

Key Points of the USASI Representation

$>$ No way to represent NaN or infinity.
$>$ Zero is represented by setting all the mantissa bits to zero. (Exponent can be anything.)
> The mantissa can start with up to 3 zeroes.
$>$ Largest possible number: $011111111111111111111111111111111_{2}$.
This is equivalent to: $\left(1-2^{-24}\right) * 16^{(127-64)} \approx 0.99999994 * 16^{63} \approx 7.237 * 10^{75}$
$>$ Smallest possible number: $00000000000100000000000000000000_{2}$. This is equivalent to: $\left(1-2^{-4}\right) * 16^{(0-64)}=0.9375 * 16^{-64} \approx 8.0964 * 10^{-78}$
$>$ Maximum relative error: $2^{-25} /\left(2^{-4}+2^{-25}\right) \approx 2^{-21}$
$>$ Dynamic Range: $16^{63} /\left(16^{-1 *} 16^{-64}\right)=16^{63} / 16^{-65}=16^{128}=\left(2^{4}\right)^{128}=2^{512}$

The IEEE 754 Representation

$>$ 1-bit used for sign ($0=$ positive, $1=$ negative.)
$>$ 8-bits used for exponent, which is stored with a bias of +127 .
>2 is the base of the exponent.
> 23-bits used for the mantissa.
> Hidden bit normalization is used.

32-bits			
Sign	Exponent		Mantissa
(1-bit)	(8-bits)	(23-bits)	

An Example of IEEE 754 Conversion

Convert: $11000010110011001001000000000000_{2}$ from IEEE 754 into its base-10 form
> Step 1: Regroup terms into sign, exponent, and mantissa.
Sign: 1 (so negative)
Exponent: 10000101
Mantissa: 10011001001000000000000
$>$ Step 2: Convert exponent to base 10, and remove the bias.

$$
10000101_{2}=133_{10}
$$

$$
133-127=6
$$

$>$ Step 3: Compute mantissa in base 10, and add 1.

$$
1.10011001001=1+2^{-1}+2^{-4}+2^{-5}+2^{-8}+2^{-11}=1.59814453125_{10}
$$

$>$ Step 4: Combine the above to get $-1.59814453125 * 2^{6}=-102.28125$
> NOTE: The binary value provided is the same one that was calculated in the USASI example! Notice how, using IEEE 754, it converts back to a different decimal value!

Key Points of the IEEE 754 Representation

> NaN is represented by an exponent of all 1s, and a non-zero mantissa.
$> \pm \infty$ is represented by an exponent of all 1 s , a mantissa of all 0 s , and sign acts normally.
$>$ Zero is represented by both exponent and mantissa being all Os. Sign doesn't matter. Consequently, there are two distinct zeroes that compare as equal.
$>$ Denormalized numbers (numbers without the hidden bit) are used when the exponent is set to all-zeroes. The mantissa can be anything. Thus zero is just a special case of a denormalized number.
$>$ Largest possible number: $011111110111111111111111111111111_{2}$. This is equivalent to: $\left(2-2^{-23}\right) * 2^{(254-127)}=1.999999881 * 2^{127} \approx 3.4028 * 10^{38}$
$>$ Smallest possible number: $00000000100000000000000000000000_{2}$. This is equivalent to: $1 * 2^{(1-127)}=2^{-126} \approx 1.1755 * 10^{-38}$
$>$ Maximum relative error: $2^{-25} /\left(2^{-4}+2^{-25}\right) \approx 2^{-21}$
$>$ Dynamic range: $2^{127} / 2^{-126}=2^{254}$

