ECSE-322

23 January 2008
Lecture 9
Multidimensional Arrays
Dynamic Structures

Cerss Tar Mondas 28 Jo

P

/

Goblm (oJo

N@ 5//%
o £

Sparse Multidimensional Arrays

Can we invent a form of vectoring?

For each column, store a value which indicates where, in the linear array, the
column begins.. q[)

Consider:
@ 0 0 0 0 12
22 0 15 0 6
0 0 0 5 7 0
15 0 0 2 0 13
14 9 17 0 0 0
0 10 1 31 0 0 é
AL 3 bule §6 e
Array of Non-zeros: <> 411, 15,14,22,9,10,17,1,15,5,2,31,7,12,6,13
Array of row indices: 6,3, 1,2, 4

“Vector” Array:

Sparse Multidimensional Arrays

e This form of vectoring does not result in an
_indexing polynomial...

* An indexing function is developed...

This function accesses the row and column
vectors.

— On a query about a particular entry, it returns a
value or zero..

e Function S(r,c).. Val := S(r,c)
= =z =

Linear Dynamic Structures

e All the structures considered so far have been
static - i.e. of fixed size..

This allows memory to be pre-allocated and
storage and retrieval to be fast.

The system is limited because the size of the
roblem has to be estimated ahead of time..

— This can lead to a waste of memory space (or an
overflow)..

Linear Dynamic Structures

e |f size cannot be determined ahead of time
(e.g. how big is a file?) then a dynamic
structure is needed..

— The counterpart to a vector or linear array is
the linear list

— These structures are used to implement the
abstract data types stacks and queues

S—

Stacks |, % ¢ 1 °
A dynamic object 91
— it grows as more data is received \
— it shrinks as data is removed (

it no longer exists in the stack

(compare this with an array - when an element is
retrieved it stays in the array and a copy is made)

—(when a data element is removed from the stack -

acks ffz

e Stacks are: g

— Single ended data structures ~ v

— All operations are performed in one pIace>

— An example is a stack of cards, or a pile of

plates.
— Data can only be placed on the top of a stack.>

— Data can only be retrieved from the top of a)
stack.

— A stack is a Last In, First Out (LIFO) structure

Stacks

 Operations:
— PUSH - place an item on the stack (

— POP - remove an item from the stack]
e Each push operation increases the size of a stack «~

e Each pop operation decreases the size of a stack.™

ﬁ In principle a stack can keep growing for ever so a
push can always be executed.

—Xln practice, a stack can run out of memory so this
state must be signaled.

Stacks

Note - A pop can only be PUSH

executed if the stack is not

empty POP
A stack might be Stack Top rop
implemented within Pointer

an array...

Queues

e Queues are double-ended

Pl D= NN TN
v | Z4 /
T4 Y queue hbad —

Data added \}

Data removed

A First In, First Out (FIFO) structure
T e

Additions at the tail, removals at the head..

"1

Note - the double ended
nature requires two
pointers.

Queues have a problem which
does not occur with a stack...

@

Queues

Oold

Z

77T 0NV

\\ <

Queues

Note - the double ended
nature requires two
pointers.

Queues have a problem which

Head

Oold

does not occur with a stack...

Tail

What is it?

HEAD

Adding and removing items means that
the queue migrates through memory!

TAIL

Queues

If an array of size N is allocated to the queue, then, after N add-and-remove
operation pairs, there is no space to add items, even though the length of the
queue may be zero!

How can this problem be solved?
1. Allitems can be moved towards the head whenever an item is removed.

=
Why is this not a good idea?

Queues

If an array of size N is allocated to the queue, then, after N add-and-remove
operation pairs, there is no space to add items, even though the length of the
queue may be zero!

How can this problem be solved?

1. Allitems can be moved towards the head whenever an item is removed.

Why is this not a good idea?

Because it requires O(N) work every time something is removed

Queues

2. Use wrap-around indexing
In Pascal this can be achieved by the use of the mod operator...
cind :=ind mod (N+1); <=—
where the array contains N+ 1 items, numbered O to N.
2\

Such a structure is often called a circular queue ‘J

O

\/' — }u/,
/ =

7

b (3
e

An Example - The Maze

TC
—
VL
Problem:
Design a data structure to help T'L
solve the problem of finding a

way through the maze

Use a stack to keep track of
the path through the maze.

Choose D
Mark Map)Q
c >
Y
D OK? Yes——————————p
No
v v
Try next D \/ Mark Map
Tried all D's? Push D
Yes + [
v v
Pop D) Move
' \
Y
< Move

Lists

e \Stacks and Queues imply an ordering to the
data..

— Data can only be accessed through the ends
e

d

— They are linear structures
— Accesses are destructive

-(A List is an alternate linear structure which
allows access to any item in the structure

Lists

 Operations:

Given an ordered sequence of items —q,, 9,, g5,...an-1, q,, - the operations
possible on lists are:

Insert (X,n,Q)

—_— store item X as the nth item of list Q.

Retrieve (X,n,Q)

copies the nt" item of list Q into X.

Delete (n,Q)
deletes the nth item of the list Q

{/{Lists are dynamic structures i.e. the length changes with time.

Lists

One more operation is optional but convenient...

Length (n,Q)
determines the length n of the list Q.

[1 2 7 (f)éh@
L

An array is possible (easy access) - but zf
The insertion of an element requires moving the existing data to
create a hole..

this operation is O(N).

Ordered Lists

— A list ordered on some key or criterion, e.g. the
entry in a telephone directory is alphabetic..

The key may be implicit, as in the alphabetic
ordering..(keys were described earlier in the
discussion on abstract data types).
> An ordered list may be implemented as an array -.
e Because the data is ordered, binary searches may
— be used.
—Q—Iowever, insertions and deletions can be slow..
Hence, hashed storage is often used

Priority Queues

e Access data on a priority basis

— A Most Important First Out structure

— Requirements:
)

e Data is retrieved based on a concept of priorit

— Examples:

e A conventional queue is a special case of the priority
gueue - priority is based on insertion time.

