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Lecture 8
Multidimensional Arrays
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The Quick Sort

— Take the original array and set index i to the
left element, j to the right element

— Compare element i with elementj. If j is
greater than i, decrement j and repeat.

— If i is greater than j, exchange elements and
increment |I.

— Keep going until all elements have been
considered -- the original left hand element will
now be in its correct place and the array will be
partitioned...



The Quick Sort

An example:

42 23 74 11 65 58 94 36
42 23 74 11 65 58 94 36
42 23 74 11 65 58 94 36
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The Quick Sort

e We now have two lists

* 362311
* 6558947499 87

— So repeat on each of these.

e Complexity issues:

(This works well if the partition is approximately in
half.

/ (- If the partition is one in one piece and the rest, then
the performance degenerates m

e The best performance is O(NlogN)<——



Multidimensional Arrays

* In the real world, most objects in
engineering are multi-dimensional..

— In describing them to a computer we need to
be able to represent dimensions greater than
one..

/ e e.g. A building exists in 3d space - each point has
three co-ordinates.

 |n electrical circuits each component may have
several inputs and outputs, each input and output
may connect several components - a multi-
dimensional structure.




Multidimensional Arrays

 The real world is multidimensional 5\3
e Computer memory is one dimensional |
* A mapping is nheeded between the two...

— How can this be done? 7
— What is the cost of doing it? <




Multidimensional Arrays

e Consider:

This could be stored as:

ﬂm {

ﬁ Or as:

<35 1 3 10

7

!5 — 9 —7
3 8 4
10 ]]2 21
8 4 10 12 21
8 12 7 4 21



Multidimensional Arrays

 To understand the mapping the following
information is needed:

— What the linear array represents (e.g. a two
dimensional array).

/

— Whether it is stored by rows or columns.

— How many columns (rows) are represented. <

— How long each column (row) is. ~

— The type of each element. /O“\v

Al o y



Multidimensional Arrays

* In a high level language, this information is
provided by a Declaration Statement...

—e.g.in C: r C
Float A[%][3]; <
 The two methods of storage are:

— storage by columns (First index varying fastest) 4
— storage by rows (Last index varying fastest)



Multidimensional Arrays

e Mapping a 2D array onto linear storage with
row-wise storage generates:

1,1 corresponds to 1 / —
—

1,2 corresponds to 2

L S

1,3 corresponds to 3
For a 3 by 3 array
2,1 corresponds to 4

-
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3,3 corresponds to 9
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Multidimensional Arrays

* In general, the mapping rule can be written

ds. 3
A
_S,QJ_) =(i-1)J + ] g o0
= s(ik) = (LUK + (1)K + & 79
= s(i,j,k,1) = (;;})%K}L+ (j—l}K]\L+ (k—1%L+I =
This can be expressed as a nested polynomial A(L/ I/ %i ﬁ)

s(i,j, k1) = (((i-1)J + (j-1))K + (k-1))L + |



Multidimensional Arrays

e Complexity issues:

— A D dimensional array requires D-1
multiplications, decrements and additions.

— Thus

Accessing a multidimensional array through a high
level language is computationally expensive...

e.g. Copying all the elements of a 3 dimensional array requires
considerable address calculation. | R
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Vectored Arrays

e How can we speed up address calculation?
— Look at the algorithm and analyse it..

— Consider the array s(l,])
P
s(i,j) = (i-1)J ;;J' =
Let bi) = (i-1)) —=—
Thens(i,j)=b(i)+] =

b(i) does not depend on j!

— b(i) is known as the base address of rowi =~



Vectored Arrays

* One base address is needed per row and can
be computed when the array is set up.

* Indexing then only requires additions. -
 The price?

+ An extra vector of memory locations to store the
base addresses..

+ In an array of 12 rows, 10 columns there are 120
elements but only 12 base addresses




Vectored Arrays

— If the elements are real numbers (4 bytes) and the
base addresses are integers (2 bytes) only 5%
more memory is heeded to store the base

addres
— This is|Array Vectoring

— The process can be extended to higher
dimensions...




Vectored Arrays

—e.g.in 4D:
s(i,j,k,1) = by(i) + b,(j) + by(k) + |

—_—— t——

— For an N dimensional array:

e The extra memory required is O(N)—
e The time for index computation is O(N)



Other Storage Schemes

 Many arrays have special properties

— e.g. symmetry.

— Using structural information can reduce storage
requirements.

— But a price is always incurred! (in this case, the
base address vector may not be usable)




Other Storage Schemes

e Consider: 1 2 4 7
2 3 5 8
4 5 6 9
I 8 9 10
This matrix is symmetric (a;; = aji)
Only store
1 2 4 7
3 5 8
6 9
10



Other Storage Schemes

e So the matrix to be stored is:

/ / &
(1,7) (12 (1Y) - (1.4)
°(2,2) - (2,3) - (2,4)
L . (33) - (3,4)
s . (4.4)
Note that the column index is always greater than or equal to the row index:
r = min(i,j) (r is the row number)
c = max(i,j) (c is the column number)

store the elements in column wise order in a linear array.



Finding an Element

e Where is sgrgcl?

— At Iocationgjk) (thisis a,)...

— The number of complete columns to the left of
a.lsc-l. =

— In a trian r matrix, c-1 columns contain
n=c(c-1)/2 elements

— In the ct" column the element is in the rth
position so

This can be vectored

s(r,c)=r



Sparse Multidimensional Arrays

e These occur everywhere!

-( How do we store an array with mostly non-
zero entries so that storage is minimized?

* In 2-D (basically an extension of 1-D):

N
— Store the non-zero values in a linear array =~

— Use a linear array to indicate the rows of t@
non-zeros

— Use a linear array to indicate the columns of
non-zeros @[m)
M



Sparse Multidimensional Arrays

Consider:

11 0 0 0 0 12
0 22 0 15 0 6
0 0 0 5 7 0
15 0 0 2 0 13
14 9 17 0 0 0
0 10 1 31 0 0
Array of Non-zeros: 11,@ 14, 22,9, 10,17,1, 15,5, 2,31,7,12,6, 13

Array of row indices: 1,@ 5 2,5 6, 5,6, 2,3,4, 6,3, 1,2, 4
—
Array of column indices: 1, (:) 1, 2,2, 2, 3,3, 44,4, 4,5, 6,6, 6

This needs 3 linear arrays each of size equal to the number of non-zeros

OK - but can we do better?



