ECSE-322

18 January 2008
Lecture 7/
Searching and Sorting

Wed @5/ 0100

L

O&L %
@,
73 3 M BN ar

/
W[OS
ASEaEY e

~ DT 0

/ LA § NG 7

Searching

e Data is only stored so that it can be found.

* In a hashing system, data is retrieved by
following the hashing function.

 What if the hashing functions are not known
or the data was stored unhashed?

R

7/ A gyt O@\B

Searching

* Find a data item given a list of data items..

 The data might be
— Totally unordered “

— Sequentially ordered

* Problem

/& — Determine where aﬁdg numbeﬂ@ occurs in a

\/ linear array of items r

Searching

e The number is known to be between

(mjandr)

— A value is to be returned such that

\ e S=m if there exists m such thatr_ =1, (Ik=m<=u)

e S=0if item does not exist in range <—

 An obvious approach

— Start at the lower bound and increment the
location until the item is found or the upper
bound is reached.

Searching

* On average - how much of the array will be

searched to find a hit?
 This is linear searching and requires O(N)
time.

* The system works well if the data is randomly
_ordered or we do not know of any structure.

Searching

 Assume data is stored in ascending order..

~_ _ ﬂ\\ Y4 B kN
213 \S\gﬁ//l/l/ 15|18 |22 \2\§<§1 3439 | 43([4) 57
I e O
= U7 VA
Question:

Does the value “43” exist in this list?

=

First step-:
Check the ce

\

ntral value...

Searching

e Assume data is stored in ascending order..

2 (3 |5 |6 |9 [11|15|18 22 25(31|34|39|43|47|53|57

Question:
Does the value “43” exist in this list?

First step:
Check the central value...

Searching

If the central value

22

is not the one wanted...

The remaining list is in two pieces - all in the right half are greater
than “22”. Since “43” is greater than “22”, it must be in the right half

(if it exists in the list)

15

18

25

31

34

39

43

47

53

57

Must be in here

Searching

25(31(34|39(43|47|53]|57

Second step..
Take the “center” value...

25(31(34|39|43|47|53]|57

If this is not “43”, the list is split again...

25(31(34 4347|5357

Since “43” is greater than the center value, take the right half...

Searching

4314753 |57

Third step...
Take the “center” value...

4347|5357

If it is not “43” split_the list...

43 .53 |57

Fourth step...

“43” is smaller than the center value so look in the left list..

43 Success!

Searching

e The value was found in 3 subdivisions of
the list and 4 compares! -~

e |f “43” had not been in the list, the
algorithm would have failed at th34th
compare and terminated.

Note that a linear search to find “43” would

have taken 14 compares - linear searches
are O(N).

Searching

* [n general
— A list with 8 items will take a maximum of 3 tries..

— A list with 16 items will take a maximum of 4
tries..

— A list with 32 items will take a maximum of 5
tries.. -

Searching - Complexity

e In general, for n items it will take t
compares where t is given by:

t = log,(n) 07D
- - S0 4
or n=2t b - 0 =
SR
kA

This process has a time complexity of?

JED

Searching - Complexity

e In general, for n items it will take t
compares where t is given by:

t = log,(n)

or n=2t

This process has a time complexity of...

O(IOgZ(N)) The algorithm is also recursive.

Sorting

e SO...
— How did the data get into ascending order?)

* |t was sorted first!
~—

e Two sorts

— Exchange or Bubble Sort
— Quick Sort
— (There are also, insertion, selection, shell,...)

The Exchange Sort

 Extremely simple in concept:
e Basically, take each pair of elements in the data set in

turn. If the order of the pair is not ascending, exchange
them....

e Repeat the process until there remain no pairs to be re-
arranged.

A (N

)

The Exchange Sort

— Given a data set of N items there are N-1 steps for
the first pass through.

— At the end of the first pass, the largest number
will be at the right hand end.

— The next pass has N-2 steps...
— What is the total?

The Exchange Sort

— Given a data set of N items there are N-1 steps
for the first pass through.

— At the end of the first pass, the largest number
will be at the right hand end.

— The next pass has N-2 steps... SN L M
%J

— What is the total?
e Sum =(N-1) +(N-2) +(N-3)+...+0
= N(N-1)/2
This is an O(N?) process - but very simple to program

The Cost of Finding Data

e What is the work to find S items in an
array?

e
— With an unordered se d a linear search

—IfSis apprOX|mater the same size as N both
strategies yield O(N?) results.

— Can we do better?

The Quick Sort

Works on a divide and conquer strategy
A member of a family of partition sorts

Keep splitting the list into two lists and work
on these independently

Recursion again

There are several variants...

The Quick Sort

e Method with an extra array:

— Take a randomly ordered array and choose one
element.

— Copy the array into temporary storage such that
all those elements smaller than the chosen one
are written from the left end to the middle, all
those elements larger are written from the right
end to the middle. At the end, copy the chosen
element into the last space.

The Quick Sort

— The copy is an O(N) operation.

— After the copy the chosen element is in the right
place and the array is partitioned into two pieces.

— The process can be repeated on each piece of the
list leaving us with 4 pieces.

— Eventually, there will be only one item in each
partition.

The Quick Sort

— This requires O(log,N) divisions....
— Overall, the time complexity is O(Nlog,N)...

— However, this process, as described, requires a
second scratch array as big as the original..

— Try again...

The Quick Sort

— Take the original array and set index i to the
left element, j to the right element

— Compare element i with elementj. If j is
greater than i, decrement j and repeat.

— If i is greater than j, exchange elements and
increment |I.

— Keep going until all elements have been
considered -- the original left hand element will
now be in its correct place and the array will be
partitioned...

