ECSE-322

16 January 2008
Lecture 6
Hashing and Searching

Hashing

e There is a need to store data which, for most
of the domain, is zero.

e There is a requirement to minimize the space
taken by the non-zero elements.

@

 There is a requirement to minimize the time
to find a data item (if it exists) (see the

previous algorithm)
@@

Hashing

e With the previous structure how do you
answer the question:

“Does the coefficient of x to the 131 exist?>

 We need a method of directly accessing the |
storage location for the coefficient of 131...

Hashing

|ldea:

— Map the data domain into a smaller space such
that each location in the original space has a
defined (not unique) position in the new space..

4

I / Space of all integers less than 1000

Known fact a priori - there will never be
more than 50 non-zeroes

Stc“'age space of 50 locations é/

Hashing

e Example: IR
pZ(X)=2e}X+3.5x499+0,2x1000
>
1
Apply this: cfﬂf Q 1 A /

+14
/7 ho (j)#[/499]+1 where j is the exponent

exponent hy(j)
1 1 &
499 5 &

1000 3 4

Hashing

 The storage of the polynomial in an array
would then be:

a: 1 147
— 499 1000
coefficient 3.5 499 P2(x)=21x+3.5x499+0.2x

// 1009
exponent / (o otl

Row number found from h(j) ”

Hashing

e How is a coefficient retrieved in this
system? 3

Step 1:

Step 2:

Step 3:

compute the array index by using the function h(j))

compare the exponent in the array location to determine if it is the}
one wanted

extract the coefficient from the array.
’/_\

A\
(N\ T2
o

Hashing

 What happens if we want the coefficient of
XSOZ?

— The process fails at step 2 because the coefficient

/ ’ I
& doesn’t exist ! -

(OL AN

W

Hashing

e How does this all work?

— Assume that we have randomly arriving data but>
we know there is a maximum of M items...

Set up an array of length M (big enough to hold all
the data)

— Assume there is @associated with each
element (doesn’t have to be a number - in the

example it is the exponent)
cEE

Hashing
\

e Using the key, e, define a mapping function
such that an index, |, in the range ¢<=I<=M IS

created... > f——o
Mo M

—

—e.g.
m:emod M@ f
\
1 (=M

Example

Consider the polynomial:

p2(x) = 3.576x131- 0.106x337 + 1.03x8>8 - 5.664x%4>

Store it as a linear array:

Coefficient location in array (key)

0 1

0 2 Set M = 6 (size of

available space)

3'576 13; Coeff. Exponerl
1.030 858

-0.106 337

-0.106 337 Apply hashing function | .0go 0

ho(e)=emod M +1 5 664 945

1.03 \/ 858 AN . 1 0.000 0

y 3.576 131

-5.664 945 -

Example

M=6 gives: M=5 §_ives
Coeff. Exponent Coeff. Exponent
1.030 858 -5.664 945
-0.106 337 3.576 131
-5.664 945 1.030 858
=6555 =6 <0800 0
3.576 131

The order the elements appear in the array depends on the hashi
function - not their original order or the order in which they were
received.

Hashing

 What could go wrong?

Hashing

e What could go wrong?

— More than one element could map to the same

place
a COLLISION och

e How can this be solved?

Hashing - Resolving Collisions

* |f a collision occurs - use a second hashing
function.

e |f another collision occurs - use a third
— Generate a family of hashing functions! Z

f@(e), k =0,1,...

Hashing - Resolving Collisions

 The process of storage becomes:

— 1. Apply the hashing function o
— 2. Check if the location computed is empty 4
— 3. Ifitis, store the data elementinit

— 4. If it is not empty, apply the next hashing
function and repeat from step 2 until success or
there are no hashing functions left.

Linear Hashing

 Asimple family of hashing functions
h.(e) = (hy(e) + k) mod M

— The implication is that, if the desired location ia
not empty, the next location is tried.

— This family of functions will wrap around in th9
storage space.

— Each attempt to store is known as a probe <

e Thus if the first function results in a collision and
the second function is successful, there are 2 =4
probes.

Bucket Hashing

* An alternate approach to resolving
collisions is to add an array at each storage
location (a bucket). In a collision, the next
location in the bucket is used..

Main %]
array __ (
Usually all the
. Buckets buckets are the
\ / - same size
v \J \j
v

Retrieving Data

e Basically use the same process as storing data
- use the hashing function..

* Problem:

— If a collision occurred in storing data, then it may
not be stored where you expect it.

— Each retrieved item must be checked to see if it is
the right one.

Retrieving Data

e E.g.
— If we want X and the hashing function points to
a, it should not be assumed that a, contains X.

i Btttk
— If a collision occurred in storing X, it will have
been stored elsewhere.

— Thus the keys of a,and X must be checked to>
see if they match

— If they do not match... Rehash with the next)
function.

Retrieving Data

* How do we know if X exists?

* If a.is not empty we cannot prove X does not
exist until M attempts have been made.

 What happens if an item was deleted after X
was stored?

Retrieving Data

e Example
To store C:
A B
C collision
A B
C —airoon
A B

YD

C stored after 2
collisions, i.e. 3 probes

Retrieving Data

Now delete B..

Retrieve C.. How can C ever be

found?

C
//\\Algorithm fails when it reaches here..

Performance of Hashing

 Rough calculations based on bounds..
— Place N elements in a large array M (N<<M) -
assume few or no collisions <—
e One fetch-hash-store cycle per item =—
* O(N) &~— A
— Place N elements in an array M (N=M) with
maximum collisions -

|

* Average element placed after N/2 attempts

. O(NZ)M@ f

Searching

o/Data is only stored so that it can be found.

* In a hashing system, data is retrieved by>
following the hashing function.

What if the hashing functions are not known
or the data was stored unhashed?

