ECSE-322

16 January 2008
Lecture 6
Hashing and Searching

Hrays) Storag Complexity Der Digo The storage A

- There is a need to store data which, for most of the domain, is zero.
- There is a requirement to minimize the space taken by the non-zero elements.
- There is a requirement to minimize the time to find a data item (if it exists) (see the previous algorithm)

 With the previous structure how do you answer the question:

"Does the coefficient of x to the 131 exist?")

 We need a method of directly accessing the storage location for the coefficient of 131...

$$\frac{\mathcal{O}^{2}}{\mathcal{O}^{2}} = \frac{\mathcal{O}_{0} + \mathcal{O}_{1} \times \mathcal{O}_{1}}{\mathcal{O}_{1}} = -\frac{\mathcal{O}_{0}}{\mathcal{O}_{1}} = \frac{\mathcal{O}_{0} + \mathcal{O}_{1} \times \mathcal{O}_{1}}{\mathcal{O}_{1}} = \frac{\mathcal{O}_{0} \times \mathcal{O}_{1}}{\mathcal{O}_{1}} =$$

• Idea:

 Map the data domain into a smaller space such that each location in the original space has a defined (not unique) position in the new space..

Space of all integers less than 1000

Known fact a priori - there will never be more than 50 non-zeroes

Storage space of 50 locations

• Example:

$$p2(x)=21x+3.5x^{499}+0.2x^{1000}$$

Apply this:

$$h_0(j) \neq (j/499) + 1$$
 where j is the exponent

 The storage of the polynomial in an array would then be:

How is a coefficient retrieved in this system?

```
Step 1: compute the array index by using the function h_0(j)

Step 2: compare the exponent in the array location to determine if it is the one wanted

Step 3: extract the coefficient from the array.
```

• What happens if we want the coefficient of x^{502} ?

- The process fails at step 2 because the coefficient

602 sl (22)

& doesn't exist!

- How does this all work?
 - Assume that we have randomly arriving data but we know there is a maximum of M items...
 - $\overline{\hspace{0.1cm}}$ Set up an array of length M (big enough to hold all the data)
 - Assume there is a key associated with each element (doesn't have to be a number - in the example it is the exponent)

• Using the key, e, define a mapping function such that an index, I, in the range $\emptyset <=I <=M$ is created...

Example

Consider the polynomial:

$$p2(x) = 3.576x^{131} - 0.106x^{337} + 1.03x^{858} - 5.664x^{945}$$

Store it as a linear array:

Example

The order the elements appear in the array depends on the <u>hashing</u> <u>function</u> - not their original order or the order in which they were received.

What could go wrong?

What could go wrong?

More than one element could map to the same place

a COLLISION occurs

• How can this be solved?

Hashing - Resolving Collisions

- If a collision occurs use a second hashing function.
- If another collision occurs use a third
 - Generate a family of hashing functions! \uparrow $h_k(e)$, k = 0,1,...

Hashing - Resolving Collisions

- The process of storage becomes:
 - 1. Apply the hashing function \checkmark
 - − 2. Check if the location computed is empty √
 - 3. If it is, store the data element in it
 - 4. If it is not empty, apply the next hashing function and repeat from step 2 until success or there are no hashing functions left.

Linear Hashing

- A simple family of hashing functions $h_k(e) = (h_0(e) + k) \mod M$
 - The implication is that, if the desired location is not empty, the next location is tried.
 - This family of functions will wrap around in the storage space.
 - Each attempt to store is known as a probe
 - Thus if the first function results in a collision and the second function is successful, there are 2 probes.

Bucket Hashing

 An alternate approach to resolving collisions is to add an array at each storage location (a bucket). In a collision, the next location in the bucket is used..

- Basically use the same process as storing data
 use the hashing function..
- Problem:
 - If a collision occurred in storing data, then it may not be stored where you expect it.
 - Each retrieved item must be checked to see if it is the right one.

- E.g.
 - If we want X and the hashing function points to a_i , it should not be assumed that a_i contains X.
 - If a collision occurred in storing X, it will have been stored elsewhere.
 - Thus the keys of a_i and X must be checked to see if they match
 - If they do not match... Rehash with the next function.

- How do we know if X exists?
- If a_i is not empty we cannot prove X does not exist until M attempts have been made.
- What happens if an item was deleted after X
 was stored?

Example

C stored after 2 collisions, i.e. 3 probes

Now delete B..

Retrieve C..

How can C ever be found?

Performance of Hashing

- Rough calculations based on bounds...
 - Place N elements in a large array M (N<<M) -
 assume few or no collisions
 - One fetch-hash-store cycle per item
 - O(N)
 - Place N elements in an array M (N=M) with maximum collisions
 - Average element placed after N/2 attempts
 - $O(N^2)$

Searching

- Data is only stored so that it can be found.
- In a hashing system, data is retrieved by following the hashing function.
 - What if the hashing functions are not known or the data was stored unhashed?