ECSE-322

Lecture 4
Data Structures – Messages
11 January 2008

(ool is on! Offici hour: Monday 10:35 TR 4105

Information transmission stat/stop encoding

- synchronous vi asynchronous

Data Structures

- Methods of organizing data

 - Requires design
 - What is the data for?
 - What operations will be needed?
 - What are the properties of the data being stored?
 - Provide means for finding particular data items
 - Allow information to be restored.

Data Structures

Examples

- Hardware implementations
 - Page buffer in the printer
 - frame buffer in a graphics system
- Software
 - A packet switched communications system
 - The process structures in an operating system

- Data is transmitted in blocks (packets)
- Each packet can be sent by a different route to the destination
- Each packet can arrive at a different time /
- Requirement:
 - Design a data structure which will enable the original message to be put together correctly

Hello World, please respond.

World, please respond.

please respond.

respond.

- Each packet is a text string
- Each packet has a position in the message

- An arriving packet goes into a pool
- The pool is sorted

 What if several messages are sent to the same destination simultaneously?

- What if several messages are sent to the same destination simultaneously?
 - Add a second tag to indicate the message number.
- These properties define the <u>abstract data</u>
 <u>type</u> pool.
 - Character strings of length one packet ending in a null
 - Message number
 - Packet number ←

An Abstract Data Type

- Describes the form of the data
 - Component element types (e.g. characters)
 - A structure that relates the component element values (e.g. a linear arrangement)
 - A domain of allowable structures (e.g. from 0 to 80 characters in a packet)
- Defines how components may be accessed
 - A set of operations on the values in the domain

An Abstract Data Type

- The abstract data type pool structures data into
 - a key (the position in the message)
 - data (the packet itself)
- This structuring is necessary a key always exists but may be implicit or, sometimes, the data may itself be the key.

A Data Structure

- The physical implementation of the data type.
- Maps the abstract data type onto the available environment.

Operations on the Data Type "Pool"

- Store (X)
 - Store a packet number and the associated text of packet X in the pool.
- Retrieve (m,n,T)
 - retrieves the text T associated with packet number
 n of message m from the pool, if it exists.

Operations on the Data Type "Pool"

The Data Structure

- The physical implementation of the data type
 - constructed from what is available in hardware
 - the elemental components are bits
 - from an abstract point of view we discuss <u>characters</u> and <u>numbers</u>
 - bits are grouped into larger structures
 - Bytes (8 bits)
 - Words (n bits) (

The Data Structure

- Common values of n

 -8, 16, 32, 64,...

- Bits are too small to deal with...
 - ot F Memory is constructed to work with individual bytes
 - Even though a working register may be several bytes wide, if each byte can be individually retrieved the machine is

Byte-addressable

Arrays and Vectors

- Ways of arranging collections of data of the same type
 - − e.g. integers, real numbers, etc..
 - Each element is unique and located by a location (its key)
 - a_{ii}, b_k,...
 - The collection of elements is an array
 - If one index is used to locate an item (e.g. b_k), it is a *linear array* or *vector*