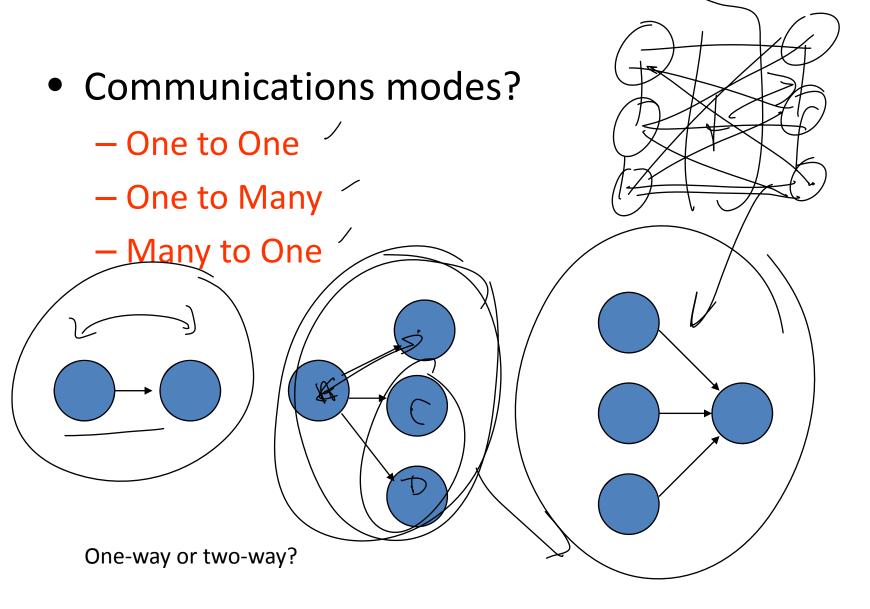

ECSE-322


Lecture 3
9 January 2008
Information Communication

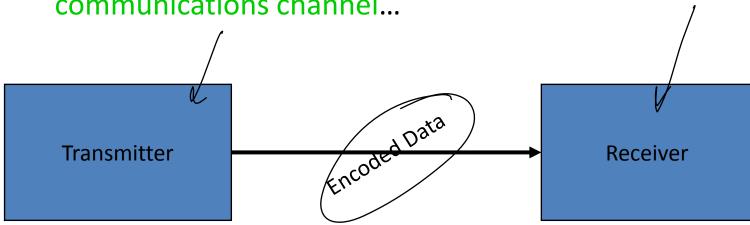
How Is Information Transferred?

• Communications modes?

How Is Information Transferred?

One-to-one Reliable Communications

• How do we do it?


One-to-one Reliable Communications

- How do we do it?
 - How do we communicate using sound?
 - What other communications methods (non-electronics) do we use?
 - Is there anything common to all the methods?

) chand ? medium)

One-to-one Reliable Communications

- The concept of a "message"
 - Information to be transmitted is encoded usually into a sequence of "phonemes" or alphabetic characters on "paper"
 - The encoded data is placed in a physical communications channel...

One to One Reliable Communications

- How do we know who is the "transmitter" and who is the "receiver"?
- How does the receiver determine the contents of the message?
- How does the transmitter know that the receiver got the message (and understood it)?

All these questions need to be answered if the system is to be reliable...

One to One Reliable Communications

- Consider the situation of telling someone about your holiday...
 - What is the process?
 - (a) when you are on holiday
 - (b) when you have returned

So we have:

- A message has content i.e. the information that is to be passed from one individual to another.
- A message has a start and an end.
- A message has a "source" and a "destination"

• Content:

- Encoded data needs to follow an encoding process agreed on by the sender and the receiver.
- The encoding process depends on the physical structure being used.

- Start and End:
 - Depends on a convention set up and agreed to by the sender and the receiver.
 - Depends on the physical medium being used../

- Source and Destination:
 - Where is the message coming from?
 - Where is it going to?
 - Both are important the destination is critical but so is the source of the message...
 - Knowing the source may allow further decoding of the information

Message Types

- Messages can contain different classes of information....
 - Such as?

Message Types

- Messages can contain different classes of information....
 - Such as?
 - Data
 - Commands
 - Messages can be used to pass data or to control operations, i.e. to send and receive orders...

Message Timing

- When can messages be sent?
 - Consider:
 - Mailing a letter...
 - Letters are picked up for transport at a particular time
 - Letters are delivered at a particular time (and all together)
 - A home security system checking with the central office
 - Happens at the same time every day
 - These are <u>SYNCHRONOUS</u> operations messages (information) is only transferred at specific times.
 - Other synchronous operations?

Message Timing

- When can messages be sent?
 - Consider:
 - A phone call..
 - The source calls the destination at an arbitrary time
 - The phone rings at the destination to indicate a call is present
 - The phone is answered.
 - Sending a package by courier
 - When the package is ready, the courier is called
 - These are ASYNCHRONOUS operations i.e. the message is passed after a "conversation" to set up the link.

Messages

- So what have we got?
 - Messages can be sent synchronously, i.e. an event (passing the message) happens at a specific time
 - Messages can be sent asynchronously, i.e. a set of operations have to be completed before the message is passed a "cause-and-effect" system.
- Throughout the course we will see examples of both of these..

Synchronous Systems

- Need to be able to specify time
 - e.g. "this lecture will be given at 12:30"
 - We all have watches which provide the synchronization information
 - Thus two channels are used:
 - The "watch channel" for synchronization
 - The "speech channel" for the information (message)

Asynchronous Systems

- The phone call
 - The "cause-and-effect" is set up on the same channel as the message is transmitted, i.e. the sound channel
- The courier
 - The signal setting up the message transfer can use a "speech channel", i.e. the phone
 - The message is passed on the "truck channel", i.e.
 the package is shipped in a truck

Identification of the Destination and Source

- In a "one-to-one" conversation, this is implicit the communications channel connects two individuals.
- Other "one-to-one" systems...
 - E.g. sending a letter
 - Requires an "address" on the envelope (the message container)
 - In this case, there are a very large number of potential destinations (all the addresses in the world) all on the same channel.. (the global mailing system)
 - Sometimes the source must be identified via a "return address".

Communications Rules

- The lecture example..
 - A Synchronous event we all arrive at the same time and the message starts. (two channels in parallel)
 - A "one-to-many" transmission the destinations are identified by the group of people in the lecture.
 - What else happens?

Communications Rules

- The communications channel is accessible by everyone in the lecture room..
 - How is the channel controlled?