
Department of Electrical and Computer Engineering

Computer Engineering

Course ECSE-322B

Problem Set 10 - Solutions

April 6, 2008

1. Simulate the traffic at an intersection of two one-way streets using semaphore operations. In
particular, the following rules should be satisfied:

 Only one car can be crossing at any given time
 When a car reaches an intersection and there are no cars approaching from the other

street, it should be allowed to cross
 When cars are arriving from both directions, they should take turns to prevent indefinite

postponement of either direction.

 Use diagrams to show how the semaphores would work.

Solution 1:

Semaphores:

Junction available = ja

add a favoured direction flag = fd.

Fd is set to ew if the east-west direction is favoured, it is set to ns if the north south direction is
favoured.

The junction is a non-shareable resource so the basic loop must be:

North-South crossing. East-West crossing

Loop: Loop:

 produce car produce car;
 wait(ja); wait(ja);
 Car crosses; Car crosses;
 signal(ja); signal(ja);
 go to loop; go to loop;

This works if cars approach from both directions but not at the same time. If they approach
simultaneously, we need a favoured direction (similar to the process in Dekker’s Algorithm)
which alternates between each direction. Thus if ew is the favoured direction, a car approaching
on the north-south road (ns) would be stopped if there is already a car on the east-west
approach(ew).

Add the favoured direction flag:

North-South crossing. East-West crossing
Loop: Loop:

 produce car produce car;
 increment number of ns cars increment number of ew cars
while (fd!= ns & number of ew cars!=0) while (fd!=ew& number of ns cars !=0)
 do nothing; do nothing;
 wait(ja); wait(ja);
 Car crosses; Car crosses;
 signal(ja); signal(ja);
 fd = ew fd = ns
 decrement number of ns cars decrement number of ew cars
 go to loop; go to loop;

Ideally, the operation of the junction should be drawn out as a set of states to verify that the
above will work.

Solution 2:

New solution to remove busy wait loop, and possibility of indefinite wait when favored direction
is always occupied.

Idea
In general, let cars go in the favored direction. But if the favored direction is always occupied, let
a car go in the non-favored direction at a certain rate.

Description
ja: junction available, semaphore
fd_turns: shared data, number of consecutive turns in favored direction.
fd_car_count: number of waiting cars in favored direction
MAX_FD_TURNS: max number of times a car is allowed to go in the favored direction before
the non-favored direction gets a turn.

Non-Favored Direction Process

Loop:

 produce car;

 wait(ja);
 while(0 < fd_turns < MAX_FD_TURNS
 and
 0 < fd_car_count)

 // let car go in favored direction, wait again
 signal(ja);
 wait(ja);

 end while

 car crosses;
 fd_turns = 0;
 signal(ja);

 go to Loop;

Favored Direction Process

Loop:

 produce car;
 increment fd_car_count;

 wait(ja);
 car crosses;
 increment fd_turns;
 signal(ja);

 decrement fd_car_count;

go to Loop;

2. Sleeping Barber Problem:
A barbershop consists of a waiting room with n chairs, and the barber room containing the
barber chair. If there are no customers to be served, the barber goes to sleep. If a customer enters
the barbershop and all chairs are occupied, then the customer leaves the shop. If the barber is
busy, but chairs are available, then the customer sits in one of the free chairs. If the barber is
asleep, the customer wakes up the barber.

Write the pseudo-code to coordinate the barber and the customers processes using semaphores.

Solution 1:

Identify processes
• The barber
• Each customer

Identify variables
• barber_state (busy, asleep)
• waiting (0, …, n) --- shared variable counts number of waiting customers
• customers (semaphore) --- indicates customers to be served
• next[i] (semaphore) --- indicates barber chair free for customer i
• done (semaphore) --- indicates customer has been shaved
• mutex (semaphore) --- update of shared variable

Identify events

• No customers, barber goes to sleep
• Customer enters, no chairs, customer leaves
• Customer enters, vacant chair, barber busy, customer takes free chair
• Customer enters, barber asleep, customer wakes barber

One possible solution (there are many):

Barber process:

While(true)
if(waiting==0)

 barber_state=‘asleep’; //go to sleep
 wait(customers);
 endif
 barber_state=‘busy’;
 i=select_next_customer(); //FCFS
 signal(next[i]); //invite customer into barber chair
 wait(mutex);
 waiting--;
 signal(mutex);
 shave_customer();
 signal(done);
endwhile

Customer process:

if(waiting==n)
 exit; //no room, leave shop
endif
if(barber_state==‘asleep’)
 signal(customers); //wake up barber
else
 wait(mutex);
 waiting++;
 signal(mutex); //take a seat
endif
wait(next[i]); //wait for barber to be free
wait(done); //get shaved
exit; //leave shop

Solution 2:

Simplified solution: only one piece of protected data, a ‘Chairs’ abstract data type. No need to
protect all individual chairs, this is overly complicated and hard to verify that deadlock cannot
occur.

Description
Chairs: abstract data type, represents a queue of all chairs.
 Chairs.semaphore: semaphore used to restrict access to chairs.
 Chairs.full(): returns true if all chairs are full.
 Chairs.empty(): returns true if all chairs are empty
 Chairs.add_customer(): adds a customer to the queue
 Chairs.process_next_customer(): removes and processes next customer in queue

Customer Process

if(Chairs.full())
 exit;
else

 wait(Chairs.semaphore);
 Chairs.add_customer(me);
 signal(Chairs.semaphore);

end if;

Barber Process

while(true)

 if(Chairs.empty())
 barber_state = ‘asleep’

 else
 wait(Chairs.semaphore);
 barber_state = ‘busy’;
 Chairs.process_next_customer();
 signal(Chairs.semaphore);

end while;

Chairs
(Shared Data)

Customer
(Process)

Barber
(Process)

3. What values can a semaphore have? Name the operations on a semaphore and describe what
they do. Demonstrate that the current value of the semaphore is dependent on its starting value
and the number of operations of each type done on it.

Answer:

A semaphore can have any non-negative integer value.
The two main operations on a semaphore are:

signal(s) (where s is the semaphore). This increments the value of s without allowing any
interruption while doing so. i.e. it is an indivisible read-modify-write operation.

wait(s). This waits until the value of s is greater than zero and then decrements s without
allowing for any interruptions in the operation, i.e. it is also an indivisible read-modify-write
operation.

There is one more operation often used on a semaphore -

initialize (s, value) This set the semaphore, s, to a specific value, where ‘value’ is greater than or
equal to zero.

Let the semaphore be, s. If the initial value is IV, the current value is CV, nw(s) is the number of
wait operations performed on s and ns(s) is the number of signal operations performed on s, then:

 CV = IV + ns(s) - nw(s) >= 0 (where >= means greater than or equal to)

 If the initial value is 1 then

 CV = 1 + ns(s) - nw(s) >= 0

 If signal and wait operations occur in pairs, then the current value of a semaphore will
always be either 0 or 1. If the initial value was 1, then the next value must be 0 and the above
equation becomes

 nw(s) <= ns(s) + 1 (where <= means less than or equal to)

(note that the above is more than the question asked for!)

4. Explain what is meant by deadlock. What are the necessary conditions for deadlock to occur?

Answer:

Deadlock is said to occur when one process is granted a resource but then needs another to
complete its task. Simultaneously, a second process has been granted the second resource but
needs the first to complete. Both processes cannot run because they each need a resource which
is held by the other and neither process is willing to relinquish the resource it currently owns.

The necessary conditions for deadlock to occur are:

1. The resources involved must be unshareable
2. Processes hold the resources they have been allocated while waiting for new ones
3. Resources cannot be relinquished while being used
4. A circular chain of processes exists - each process currently holds resources being
requested by the next process in the chain.

