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1. Floating point representation: 
 
(a) Show the IEEE-754 binary representation of the number –0.75 (i.e.- ¾ in base 10) using the 
single precision format. 
 
Solution: 
 
For IEEE, bit 31 is the sign but, bits 30-23 are the exponent bits and are stored in excess-127, 
and the rest are for the mantissa using hidden bit normalization. 
 
-0.75 = -3/4 = -3 * 2-2 = -1.5 *2-1 
 
The resultant representation is: 
10111111010000000000000000000000, where the sign=-1, the exponent=-1 and the 
mantissa=1.5 
 
(b) What floating point number (in IEEE-754 format) is represented by the following:  
00110000001000000000000000000000 
 
Solution: 
 
00110000001000000000000000000000 = -10 x 2(96-127) x (1 + 2-2) 
= 5.820766x10-10 
 
(c) Represent 0.125 165 and -0.125 x 16-5 in USASI. 
 
Solution: 
 
Recall that, for USASI,  
bit 0 = sign bit 
bits 1-7 = exponent bits stored in excess-64  
bits 8-31 mantissa bits (six hexadecimal digits normalized fraction) 



 
The exponent 5 in excess 64 is equal to 69 (1000101) 
The mantissa 0.125 is 1/8 = 2/16 = 2*16-1, thus 0.2 in hexadecimal (hence 0100 …) 
The exponent –5 in excess 64 is equal to 59. Thus resulting representation follows: 
 
0.125 x 165   is represented as  0 1000101 0010 0000 0000 0000 0000 0000 
-0.125 x 16-5 is represented as  1 0111011 0010 0000 0000 0000 0000 0000 
 
(d) Identify how infinity, not a number, and 0 are represented in IEEE-754 and USASI. 
 
Solution: 
 
IEEE-754: 
Infinity: all exponent values are =1, all mantissa values are = 0. 
NaN : all exponent values are = 1, mantissa = non zero 
0: all bits are = 0 
 
USASI: 
Cannot represent infinity or NAN 
0: Mantissa bits are 0 
 
2. Determine the maximum relative error and minimum and maximum values of a real number 
stored using the following floating point formats: 

(a) IEEE 754,  
(b) USASI. 

 
We define the relative error in terms of the difference between the number and its representation 
as follows: 
 
Let rep(n) be the representation of n. 
The relative error is err(n) = |rep(n) – n| / |n|, where |n| represents the absolute value of n. 
 
(Note: This question is intended to be particularly challenging.) 
 
Solution: 
 
The floating point format of a number n is: 

))()(( exp MantissaBaseSignn =  
 

In digital floating point representations, the mantissa can only be represented up to a finite 
precision. Error is introduced because the least significant bits are dropped: 

)())(()( exp MantissarepBaseSignnrep = , 
)(MantissarepMantissa ≠  

 
The relative error measures representation error of a number n relative to the size n : 
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Note that only the mantissa is relevant in the relative error calculation. To maximize the relative 
error, we want to find a mantissa that maximizes )(MantissarepMantissa −  and minimizes 

Mantissa . This is the mantissa whose representable portion is the smallest possible, and whose 
unrepresentable portion is the largest possible. 
 
(a) 
The smallest representable mantissa is 1 (i.e., the mantissa field is all zeroes). 
Assuming rounding of the least significant bits, the largest unrepresentable portion is 242− . 
The maximum relative error is: 
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The largest exponent represented in IEEE 754 is 11111110 in excess-127, i.e. 254 – 127 = 127.  
The largest mantissa is 1.111… (all 23 bits in the mantissa field are 1) which is 2 – 2-23.  The 
largest number is 2127 *(2-2-23) = 2128 – 2104.  The smallest number represented in IEEE 754 is 
therefore – 2128 + 2104. 
 
Some more estimations, not required: The smallest exponent is 00000001 in excess-127, i.e.. 1 – 
127 = -126, and the smallest mantissa is 1.  The smallest positive number represented in IEEE 
754 is therefore 2-126.  The dynamic range is approximately 2128/2-126= 2254. 
 
(b) 
The smallest representable mantissa is 42− , corresponding to mantissa 0001 0000 0000 0000 
0000 0000 (the first hexadecimal digit must be non-zero for any non-zero number in USASI). 
Assuming rounding of least significant bits, the largest unrepresentable portion is 252− . 
The maximum relative error is: 
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The largest exponent represented in USASI is 1111111 in excess-64, i.e. 127-64 = 63.  The 
largest mantissa is 0.111… (all 24 bits in the mantissa field are 1) which is 1 – 2-24.  The largest 
number represented in USASI is 1663*(1-2-24) = 2(4*63)(1-2-25) = 2252 (1-2-25) = 2252 – 2228.  The 
smallest number represented in USASI is therefore – 2252+ 2228. 
 
Some more estimations, not required: The smallest exponent is 0000000 in excess-64, i.e.. –64, 
and the smallest mantissa is 1/16.  The smallest positive number represented in USASI is 



therefore 16-64 *16-1 = 16-65 = 2(-4*65) = 2-160.  The dynamic range is approximately 2252/2-160= 
2512. 
 
 
3. Hashing:  
 
Consider a list of words to be placed into an array of size M=11 using the following hash 
function: 

   

h(x) = (sum of the ASCII decimal values of the first and last letters of the word) mod M 

 
(a) Draw the resulting array (referred to as a hash table) after inserting, in order, the 

following words ibex, hare, ape, bat, koala, mud, dog, carp, stork if collisions are dealt 
with through linear (sequential) probes.  

 
Solution 

h(ibex) = (105+120)mod 11 = 225 mod 11 =5 
h(ape) = (97+101)mod 11 = 198 mod 11 = 0 
h(bat) =(98+116)mod 11 = 214 mod 11 =5 – collision! 6 
h(koala) = (107+97)mod 11= 204  mod 11 =6 – collision! 7 
h(mud) = (109+100)mod 11=  209 mod 11 =0 – collision! 1 
h(dog) = (100+103)mod 11=  203  mod 11 = 5 – collision! 6- collision! 7 – 
collision - 8 
h(carp) = (99+112)mod 11=  211 mod 11 = 2 
h(stork) =(115+107)mod 11= 222 mod 11 =2 – collision! 3 

 
0 ape 

1 mud 

2 carp 

3 stork 

4  

5 ibex 

6 bat 

7 koala 

8 dog 

9  

10  

 
(b) How many collisions does this result in?  
 
Solution:  



7 collisions 
  
 
(c) Draw a picture of the resulting hash table that uses bucket hashing instead.  

 
Solution: 
 
Bucket Hashing 

0 ape  mud  
1    
2 carp stork  
3    
4    
5 ibex bat dog 
6 koala   
7    
8      
9    
10    

 

 
 
4. A problem commonly encountered with linear hashing at medium levels of occupancy is 
“clustering”: data items tend to gather in clusters of consecutive locations in the hash table.  
Explain what causes the phenomenon of clustering, and which hashing functions are less likely 
to create clustering. 
 
Solution: 
 
The trouble with a linear family of hashing functions is that, after a collision, two streams of 
hashing are merged, thus doubling the likelihood of further collisions at the respective location.  
To see that, notice that h1(i)=h0(j) ⇒ h2(i)=h1(j) ⇒ h3(i)=h2(j) ⇒ …; hence, if i takes j’s 
location, then other items in i’s family will compete with items in j’s family for locations h1(i), 
h2(i), h3(i), etc, which are the same as h0(j), h1(j), h2(j), etc, and the items from two streams 
will cluster in these locations.  (Recall that linear hashing uses hk(i) = (i + k) mod N, where N is 
the capacity of the hash table.)  
 
For the same reason, clustering will also occur with variations of linear hashing, such as hk(i) = 
[(i + k) / N], where [ / ] yields the quotient of integer division. 
 
To avoid clustering, select a family of hash functions that avoid complete overlap of locations 
that are tried consecutively for different items; for example, take hk(i) = (i + 2k) mod N, where N 



is the capacity of the hash table.  The terms 2k can be computed cheaply by shifting, or can be 
vectored. 
 
 


