
McGill University COMP251: Assignment 3 Solution

Question 1 Idea: A number x in {0, 1, . . . , n3 − 1} can be expressed in the form

a2n
2 + a1n + a0

where 0 ≤ a2, a1, a0 ≤ n− 1. More precisely,

a2 = ⌊
x

n2
⌋, a1 = ⌊

x

n
⌋ − a2n, a0 = x− n(a2n + a1)

In other words, a2, a1, a0 are the digits of x written in base n: x = a2a1a0n.
Two numbers written in base n are compared just as in base 10: Suppose that x = a2a1a0n and

y = b2b1b0n then x > y if and only if











a2 > b2 or

a2 = b2 and a1 > b1 or

a2 = b2 and a1 = b1 and a0 > b0

We can now use Radix sorting. Here the range of each digit is k = n, and each number has 3
digits. The running time for Radix sorting is Θ(d(n + k)) = Θ(n) (d is the number of digits, here
d = 3).

The algorithm: The algorithm Some-linear-sort below takes as input an array X of integers
between 0 and n3 − 1, sorts it in non-decreasing order, and store the result in X.

The algorithm consists of 3 main parts:

• Preparing for radix-sort (lines 1 to 9): here we compute the base-n representation for each
element in X. Each X[i] is represented as row A[i] in a 2-dimensional array A.

• Radix sort the base-n representations (lines 10 to 37): There are 3 digits (thus the for-loop
on line 11).

• Now convert the sorted base-n representations back and store in X (lines 38-41).

Some-linear-sort(X)

1. % initialization

2. n← length(X)

3. A: an 2-dimensional array of size n× 3

4. % first convert the numbers into base n and store the results in A. Suppose X[i] = (a2a1a0)n
,

then A[i][2] = a2, A[i][1] = a1, A[i][0] = a0

5. for i from 1 to n do

6. A[i][2]← ⌊X[i]
n2 ⌋

7. A[i][1]← ⌊X[i]
n
⌋ − nA[i][2]
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8. A[i][0]← X[i]− n(nA[i][2] + A[i][1])

9. end for

10. % now radix sort

11. for digit from 0 to 2 do % counting sort on the digit-th digit

12. % initializes counting array C:

13. for j from 0 to n− 1 do

14. C[j]← 0

15. end for

16. % next make each C[j] be the number of i such that A[i][digit] = j:

17. for i from 1 to n do

18. C[A[i][digit]]← C[A[i][digit]] + 1

19. end for

20. % sum up: each C[j] will be the number of i such that A[i][digit] ≤ j:

21. for j from 1 to n− 1 do

22. C[j]← C[j] + C[j − 1]

23. end for

24. % now put each row A[i] into the right place (in B):

25. for i from n down to 1 do

26. B[C[A[i]][0]]← A[i][0]

27. B[C[A[i]][1]]← A[i][1]

28. B[C[A[i]][2]]← A[i][2]

29. C[A[i]]← C[A[i]]− 1

30. end for

31. % copy the array B back to A:

32. for i from 1 to n do

33. A[i][0]← B[i][0]

34. A[i][1]← B[i][1]

35. A[i][2]← B[i][2]
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36. end for

37. end for

38. % now get back the values from the base-n representations and output in X

39. for i from 1 to n do

40. X[i]← n2A[i][2] + nA[i][1] + A[i][0]

41. end for

Question 2 (a) Data structure: We are using a data structure for unbounded branching tree.
Each node in the tree has the following fields (here we don’t need the parent):

1. left-child: pointer to its leftmost child (NIL if this node is a leaf)

2. right-sibling: pointer to its right sibling (NIL if this node the the rightmost child of its parent)

3. constant: Boolean value, TRUE if this is a leaf and contains a constant value (as oppose to
a variable)

4. value: value of the subformula rooted at this node

5. index: if this node is represents a variable (i.e., it is a leaf and constant = FALSE), then the
variable represented is X[index]

6. operator: one of the values {+,−,×,÷}

(b) We give a recursive algorithm eval(x) for evaluating a formula represented by the tree
rooted at x, and store the value in x.value. (So if x represents a constant, i.e., x is a leaf and
x.constant = TRUE, then we don’t have to do anything). Assuming all the children of x have
been evaluated, then we simply go through the list of its children, extract their values, and apply
the operator of x. If x is an + or × node then it might have more than two children, and we need
to loop through them. Otherwise x has only two children and we simply apply the operator to
their values.

(It is a good excercise to write a non-recursive algorithm using stack, and you should try it out
yourself.)

The algorithm: eval(x, X) takes as input a node x and the array X that specifies the values
of the variables (i.e., xi = X[i]) and return the value of the expression represented by x.

eval(x, X):

1. % the first case is when x is a variable

2. if x.left-child = NIL and x.constant = FALSE then x.value← X[x.index]

3. % second case: if x is not a constant nor a variable, compute value of x recursively

4. else if x.left-child 6= NIL

5. y ← x.left-child
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6. while y 6= NIL do

7. eval(y)

8. y ← y.right-sibling

9. end while

10. % now use the operator of x

11. y ← x.left-child

12. if x.op = “+” then

13. v ← 0 % v will be the value of x

14. while y 6= NIL do

15. v ← v + y.value

16. y ← y.right-sibling

17. end while

18. x.value← v

19. else if x.op = “×” then

20. v ← 1 % v will be the value of x

21. while y 6= NIL do

22. v ← v × y.value

23. y ← y.right-sibling

24. end while

25. x.value← v

26. else if x.op = “−” then

27. z ← y.right-sibling

28. x.value← y.value− z.value

29. else if x.op = “÷” then

30. z ← y.right-sibling

31. x.value← y.value÷ z.value

32. end if

33. end if
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(c) Again, we give a recursive algorithm, and it’s an exercise to write a non-recursive algorithm
using stack. If x is a constant then we print its value, otherwise if x is a variable then we print a
letter X followed by its x.index. Finally, for other cases we

• print a “(”,

• then print x’s children recursively (separated by x’s operator),

• then a “)”.

The algorithm:
print(x)

1. % if x is a constant

2. if x.left-child = NIL and x.constant = TRUE then print x.value

3. % if x is a variable

4. else if x.left-child = NIL and x.constant = FALSE then print “X”; print x.index

5. % now if x is not a constant nor a variable, print it recursively

6. else

7. print “(”

8. y ← x.left-child

9. while y 6= NIL do

10. print(y)

11. print x.operator

12. y ← y.right-sibling

13. end while

14. print “)”

15. end if

Question 3 Idea: We will construct an undirected graph whose nodes are wrestlers, and there
is an edge between u and v if and only if they are rivals. The idea of the algorithm is as follows.
We start with an arbitrary node s, assign it “good”, and run BFS from there in order to classify
all nodes reachable from s. It is necessary that all neighbors of s are “bad”, then all neighbors of
these neighbors are “good”, etc. So if we detect a rivalry between two “good” or two “bad” nodes,
then no designation is possible and we report error in this case.

After doing BFS at s, if there are nodes in G unvisited we choose one of them and repeat the
process.
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(a) We will use the adjacency list representation for the graph. So associated with each node
v is a linked list Adj[v] that contains the neighbors of v. We will also use a field label[v] for the
designation of node v. These are either 0 (for “Good”) or 1 (for “Bad”). To facilitate BFS, we
have a color field color[v] for each node v. color[v] can have two values: White and Black. At the
beginning all vertices are White. Once a vertex is visited in a BFS it’s changed to Black.

(b1) Parsing the input. We construct the adjacency list for each vertex. Simply go through the
array R, for each pair (u, v) in the array add v to Adj[u] and add u to Adj[v].

1. for i from 1 to length(R) do

2. (u, v)← R[i]

3. insert v to Adj[u]

4. insert u to Adj[v]

5. end for

(b2) We do BFS starting at node 1, compute the distance from 1 to other vertices reachable
from it. If during the search we see an edge between two vertices of the same distance to v then
we know that no designation is possible. After BFS at 1, if there are White vertices left then we
choose the one White vertex and do the same, and so on. At the end, the designation for a node v

is determined by the parity of d[v].

1. % initialization: start with White vertices

2. n← length(W )

3. for i from 1 to n do

4. color[i]←White

5. end for

6. % main for-loop: do BFS while there are White vertices left

7. for i from 1 to n do

8. if color[i] = White do

9. label[i]← 0

10. % now do BFS at i

11. Queue Q← ∅

12. color[i]← Black % mark that i has been visited

13. Enqueue(Q, i)

14. while Q is not empty do

15. v ← Dequeue(Q) % take an element from the queue
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16. for each u in Adj[v] do

17. if color[u] = White do

18. label[u]← 1− label[v] % give u different label from v

19. color[u]← Black

20. Enqueue(Q, u)

21. else do % if color[u] = Black

22. if label[u] = label[v] % two neighbors with the same label

23. print “NO DESIGNATION POSSIBLE”; return

24. end if

25. end if

26. end for

27. end while

28. end if

29. end for

(b3) Now we print out the labels next to the names of the wrestlers.

1. for i from 1 to n do

2. print W [i]

3. if label[i] = 0 print “Good”

4. else print “Bad”

5. end for

(c) The procedure in (b1) has length(R) = |E| iterations. Each iteration take constant time,
so in total it takes O(|E|) time.

For the procedure in (b2): the initialization requires time O(|V |). The main part (lines 7 to 29)
is complicated (as DFS), but the analysis can be done in similar, simple way. Instead of looking
at the loops, we look at the amount of work done for each node and each edge in the graph. Here
each node v is checked colored Black once, enqueued and dequeued once, gets a label once, and its
color is checked deg(v) + 1 times (one on line 8, the other on line 17). Each edge of the graph is
crossed at most once (comparing the labels of its endpoints, line 22). So in total this part takes
time O(|V |+ |E|).

The procedure in (b3) requires time O(|V |).
As a result, the total running time is O(|V |+ |E|).
(d) There are two parts here. First we show that if the algorithm prints the error message “NO

DESIGNATION POSSIBLE”, then indeed no designation is possible. Because every two BFS trees
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are not connected, the designation for each tree is independent of each other. So without loss of
generality, suppose that the message is printed during BFS starting at vertex 1. We can assume
that 1 is designated “Good” (by reversing the labels of all wrestlers if necessary). So all neighbors
of 1 can only be designated “Bad”, and so on. In other words, the designation of each node visited
in the BFS starting at 1 is uniquely determined by the designation of 1. Therefore if there is an
edge between two nodes with the same designation, no designation is possible.

Now we show that if no error message is printed, then the output is correct. This is because
right after designating a node we color it Black, and for each edge with both Black endpoints its
endpoints do not have the same designation. For an edge (u, v):

• if (u, v) is an edge in the BFS tree, then they are assigned different labels (line 18)

• otherwise, their labels are compared on line 22.

Question 4 Idea: The problem is to find for each vertex v the vertex with smallest label that is
reachable from v. Put it another way, suppose that we reverse the edges in the graph and obtain a
new graph G′. Then for each vertex v we want to find a vertex s with the smallest label such that
there is a path (in G′) from s to v. This suggests that we sort the vertex of G′ in non-decreasing
order of their labels, then perform DFS in this order. The value of a vertex v is the label of vertex
s if v is visited during a call to DFS(s). So as we do the DFS, we will propagate the label of the
root of the DFS tree and make it the value of all nodes in the tree.

Reversing the edges in the graph takes time O(|V | + |E|). The DFS algorithm takes time
O(|V |+ |E|). Because the labels are integer between 1 and 5|V |, the sorting mentioned above can
be done using counting sort, which takes time O(|V |). So in total the running time is O(|V |+ |E|).

Data structure: Each node u has a color color[u]. Here for simplicity we use only two colors:
White and Gray (as pointed out in class, Black is not necessary). We use an array value, value[u]
will be the value of u.

The algorithm:

1. Sort V in non-decreasing order of the labels using counting sort, store result in array A

2. % next, reverse the edges of G: B[v] is the adjacency list of v in the new graph G′

3. for v in V do

4. for u in Adj[v] do

5. insert v into B[u]

6. end for

7. end for

8. % now use DFS using the ordering in A, on G′

9. % initialization

10. for each u in A do

11. color[u]←White
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12. end for

13. % now the main loop

14. for each u in A do

15. if color[u] = White do

16. V isit(B, u)

17. end if

18. end for

The code for Visit: we perform the DFS visit, propagating the value of the root of the tree to
all nodes in the DFS tree.

Visit(B, u):

1. stack S ← ∅ % initialize S to the empty stack

2. push(S, u)

3. while S is not empty do

4. x← pop(S)

5. value[x]← L[u] % propagate the label of u

6. if color[x] = White do

7. color[x]← Gray

8. push(S, x)

9. for each v in B[x] do

10. if color[v] = White do

11. push(S, v)

12. end if

13. end for

14. end if

15. end while

Running time: The procedure for reversing the graph visits each edge once, each vertex once,
so it takes time O(|V |+ |E|). Sorting using counting sort takes time O(|V |). Performing DFS (and
propagating value) take time O(|V |+ |E|).

Correctness: It suffices to show that for any vertex v: if s is the vertex with smallest label
such that there is a path from s to v in G′, then Visit(B, s) will be called (on line 16 of the main
loop), and hence value[v] = L[s] as required.
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For any vertex u with L[u] < L[s], there is no path from u to v. As a result, there is also no
path from u to s. (Otherwise concatenate a path from u to s and a path from s to v we get a path
from u to v.) Thus the DFS tree rooted at u cannot contain s nor v. As a result, v is visited during
a call to Visit(B, s). QED.
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