McGill University COMP251: Assignment 3

Worth 10%. Due October 29 at the beginning of lecture (10am sharp!)

Question 1 Give an algorithm that sorts (into non-decreasing order) an input array of n integers in the range 0 to $n^{3}-1$. Your algorithm must run in $\mathcal{O}(n)$ time.

Question 2 For this question, an arithmetic expression (or just expression) is built from integers and variables x_{1}, x_{2}, \ldots, using the operations,,$+- \times, \div$ as follows:

- any number is an expression,
- any variable is an expression,
- if A and B are expressions, then so are $(A-B)$ and $(A \div B)$,
- if $A_{1}, A_{2}, \ldots, A_{k}$ are expression, then so are

$$
\left(A_{1}+A_{2}+\ldots+A_{n}\right) \quad \text { and } \quad\left(A_{1} \times A_{2} \times \ldots \times A_{n}\right)
$$

For example,

$$
\left(\left(x_{1}+5+\left(x_{2} \times 3 \times x_{6}\right)+\left(x_{2} \div x_{1}\right)\right)-4\right)
$$

is an expression.
(a) Give a data structure for representing arithmetic expressions as trees of unbounded branching. Clearly explain the fields you are using.
(b) Give an algorithm that on input (A, X), where A is the root of the tree representing an expression which we also call A and X is the array of the values for variables, outputs the value of expression A when the variables are set according to X (i.e., $x_{1}=X[1], x_{2}=X[2]$, etc.).
(c) Give an algorithm that given the root of the tree representing an expression prints out the expression.

Question 3 There are two types of professional wrestlers: "babyfaces" ("good guys") and "heels" ("bad guys"). Between any pair of professional wrestlers, there may or may not be a rivalry. Suppose we have n professional wrestlers and we have a list of r pairs of wrestlers for which there are rivalries. In this question, you are asked to give an $\mathcal{O}(n+r)$-time algorithm that determines whether it is possible to designate some of the wrestlers as babyfaces and the remainder as heels such that each rivalry is between a babyface and a heel. If it is possible to perform such a designation, your algorithm should print it.

The input to your algorithm is an array W of distinct names (of the wrestlers), and an array R of distinct pairs of rivalries.
(a) Clearly describe the data structure you are using.
(b) Give the algorithm. (Your algorithm should consist of 3 parts: one for parsing the input, one for perform some graph search, one for print the output).
(c) Verify that your algorithm runs in time $\mathcal{O}(|W|+|R|)$, where $|W|$ and $|R|$ denote respectively the lengths of the arrays W and R.
(d) Prove that your algorithm is correct.

Question 4 Let $G=(V, E)$ be a directed graph, in which each vertex $v \in V$ is labeled with a unique integer $L(v)$ called the label of v. For each vertex v, let $R(v)$ be the set of vertices that are reachable from v :

$$
R(v)=\{u \in V: \text { there is a path from } v \text { to } u\}
$$

Define $\operatorname{value}(v)$ to be the minimum label in $R(v)$:

$$
\operatorname{value}(v)=\min \{L(u): u \in R(v)\}
$$

Give an $\mathcal{O}(|V|+|E|)$-time algorithm that computes value (v) for all vertices $v \in V$, that is, your algorithm must print value (v) for each vertex v of G.

The graph is presented using the adjacency list data structure. So the input to your algorithm is a pair (n, Adj) where n is the number of vertices in the graph (we take $V=\{1,2, \ldots, n\}$), and Adj is an array of length n whose element $A d j[v]$ is the (pointer to the head of the) linked list of neighbors of node v (for $1 \leq v \leq n$). If you need additional data structures (e.g., additional attributes associated with the vertices) clearly describe them.

