
Introduction to Algorithms November 29, 2002
Massachusetts Institute of Technology 6.046J/18.410J
Professors Erik Demaine and Shafi Goldwasser Handout 26

Problem Set 7 Solutions
(Exercises were not to be turned in, but we’re providing the solutions for your own interest.)

Exercise 7-1. When � is a power of 3, we divide each polynomial into three parts, grouping
coefficients for those terms having degrees 0, 1, and 2 mod 3. Formally, ���� � ����

�� �
�����

��� ������
��, where �� has the coefficients of � for only those terms have degrees that are

� mod 3. The recurrence for the new algorithm is � ��� � �� ����� � ����, which by the Master
Theorem solves to � ��� � ��� ��	��.

Exercise 7-2. The total running time for the �th operations, where � is a power of
, is � �
 �
� � ��
��� �� �
��� ���� � � � ����. The total running time of the other operations is � � ��	 ��.
Therefore the amortized cost per operation is ����.

Exercise 7-3. The potential function is (a constant multiple � of) the sum of the depths of all the
nodes in the heap. We sketch why this works: for INSERT, the actual amount of work done is
����	��, and the potential function increases by ����	�� because a new element is added to the
tree. For DELETE-MIN, the actual work done is again ����	�� plus ����. However, the potential
decreases by � ��	� because an element is removed. If we choose � to match the constant hidden
in the ����	��, then the decrease in potential cancels out the real work that is done, leaving ����
amortized cost.

Note that this result is just the result of “clever accounting,” and not anything earth-shattering. In
any application of a min-heap, the number of INSERT operations must be at least the number of
DELETE-MIN operations, so the running time is dominated by the insertions.

Exercise 7-4. To compute the transpose for an adjacency-list representation, we make a new array
of adjacency lists for 	� .. We walk down each adjacency list of 	. On the list for node
, when
encountering a node �, we add
 to the front of �’s list in 	� . Each step takes ���� time, so the
total time is ��� �
�.

For an adjacency-matrix representation, we merely need to compute the transpose matrix. This can
be done in ��� �� time.

Exercise 7-5. (Trivia: this problem is otherwise known as “testing whether a given graph is bipar-
tite.”) The wrestlers correspond to nodes in a graph, and their rivalries correspond to edges. Pick
an arbitrary vertex � and run a breadth-first search from � to produce a vector � of shortest path
lengths from �. (If the graph is unconnected, run BFS on each of its components.) Then iterate
over the edges: if �
� �� is an edge and ��

 and ���
 have the same parity (i.e., both even or both
odd), then output “no designation.” If every edge passes this test, output all
 such that ��

 is even
as the good guys, and all � such that ���
 is odd as the bad guys.

First, note that if all the edge tests are passed, then the designation is a proper one, because every
rivalry is between a good and bad guy. Now suppose some test is not passed for an edge �
� ��: in

2 Handout 26: Problem Set 7 Solutions

any designation,
 and �must be of the same type because they are the same number of “hops” from
�. But this means the rivalry between
 and � is not satisfied. Thus, there is no valid designation.

The running time is clear: BFS takes linear time ���� ��, and iterating over the edges takes ����
time, for ���� �� total.

Exercise 7-6. The graph is on four vertices �� ��
� �, where ����
� � �, ���� �� �
, ��
� �� �
�
, and ���� �� � �. Starting from �, we set ���
 �
 and ��

 � �. Therefore � is extracted, so we
set ���
 � ���
 � � � �. Next � is extracted, and no changes are made to �. Finally
 is extracted,
and we set ���
 � ��

 � �
 �
, then the algorithm terminates. Note that the shortest path to �
is ��
� �� �, and has length 3. However, at the end of the algorithm, ���
 � � (corresponding to the
path �� �� �).

The proof of Theorem 24.6 fails where (on page 598, end of second paragraph) it claims that
Æ��� �� � Æ���
� “because � occurs before
 on a shortest path from � to
 and all edge weights
are nonnegative.” In fact, we see in the above example that this is not the case: the shortest path
from � to � is ��
� � and has length
, but the shortest path from � to
 has length �. Therefore the
proof of correctness is no longer sound.

Problem 7-1. Maximum Spanning Tree

We note that this problem is very similar to the minimum spanning tree problem. One correct
solution involves a direct transformation, by negating all the edge weights of	 and running Prim’s
(or Kruskal’s) algorithm on the resulting graph 	�. (These algorithms work properly even with
negative edge weights.) A minimum spanning tree on 	� is a maximum spanning tree on 	,
because a tree in 	� is a tree in 	 and vice versa, and because the weight of a tree in 	� is negated
in 	.

Another way to solve this problem is by noticing a greedy-choice property, similar to that of the
minimum spanning tree (and proven in a very similar way): in any maximum spanning tree � , if
we remove an edge �
� �� to yield two trees �� �, then � and � are maximum spanning trees on
their respective vertices, and �
� �� is a heaviest edge crossing between those sets of vertices. With
this in mind, we can use Prim’s algorithm with a max-heap, or Kruskal’s algorithm with the edges
sorted in descending order of weights, to find a maximum spanning tree. The running times remain
unchanged.

Problem 7-2. Toeplitz Matrices

(a) The sum is Toeplitz. If we are adding matrices � and � (with entries ���� and ���� ,
respectively), then the sum � (with entries ����) has

���� � ���� � ���� � �������� � �������� � ��������

as desired.

Handout 26: Problem Set 7 Solutions 3

The product is not necessarily Toeplitz. Here is a counterexample:

�
�

� �

��
� �

 �

�
�

�
�

 �

�

(b) Note that there are only
� � � diagonals in an � � � matrix, and the values on a
diagonal are all the same. Therefore we need only a �
� � ��-coordinate vector to
represent an � � � Toeplitz matrix. Specifically, the vector is a tuple of the elements
����� ������� � � � � ����� ����� � � � � ����. Adding two matrices is done by adding their rep-
resentative vectors, entry-by-entry. This takes only ���� time (and space).

(c) Let the input vector be a column vector �� � ���� � � � � ���
� , and call the product �� �

���� � � � ���
� . Suppose also that we are representing the Toeplitz matrix� by the vector

�� described above. Then by the definition of Toeplitz and matrix multiplication, we
have

�� �
��

���

�������� �
�����
���

���������

where we adopt the convention that �� � � when � � �, and �� � � when � � �.
But now we see that the coefficient �� is just the coefficient of the degree-��� �� term
of the product of polynomials � and �, whose representations are given in coefficient
form by the vectors �����. These polynomials have degree ����, so we can multiply
them in ��� ��	�� time, as desired.

Problem 7-3. Amortized Queues

(a) The total work is � � �� �
� � � � �� � � � �� �

. At the end, �� has � elements,
and �� has
.

(b) An insertion always takes 1 unit, so our worst-case cost must be caused by a removal.
No more that � elements can ever be in ��, and no fewer than � elements can be in ��.
Therefore the worst-case cost is
�� �:
� units to dump, and one extra to pop from
��. This bound is tight, as seen by the following sequence: perform � insertions, then
� removals. The first removal will cause a dump of � elements plus a pop, for
�� �
work.

(c) The tightest amortized upper bounds are 3 units per insertion, and 1 unit per removal.
We will prove this 2 ways (using the accounting and potential methods; the aggregate
method seems too weak to employ elegantly in this case). (We would also accept valid
proofs of 4 units per insertion and 0 per removal, although this answer is looser than
the one we give here.)

Here is an analysis using the accounting method: with every insertion we pay $3: $1
is used to push onto ��, and the remaining $2 remain attached to the element just
inserted. Therefore every element in �� has $2 attached to it. With every removal we
pay $1, which will (eventually) be used to pop the desired element off of ��. Before

4 Handout 26: Problem Set 7 Solutions

that, however, we may need to dump �� into ��; this involves popping each element
off of �� and pushing it onto ��. We can pay for these pairs of operations with the $2
attached to each element in ��.

Now we analyze the structure using the potential method: let �� �
�� denote the number

of elements in �� after the �th operation. Then the potential function � on our structure
 � (the state of the queue after the �th operation) is defined to be �� �� �
���

��. Note
that ���

�� � � at all times, so �� �� � �. Also, ���
� � � � initially, so �� �� � � as

desired.

Now we compute the amortized costs: for an insertion, we have � ���
� � ��

� � �, and
the actual cost �� � �, so

��� � �� � �� ����� �� �� � � �
���
� � ���
���

�� � ��

For a removal, we have two cases. First, when there is no dump from �� to ��, the
actual cost is �, and � ���

� � ��
�. Therefore ��� � �. When there is a dump, the actual

cost is
���
��� �, and we have ����

� � �. Therefore we get

��� � �
���
��� �� � ��
���

�� � �

as desired.

Problem 7-4. Shortest-Path Special Cases

(a) We make the following observation about Dijkstra’s algorithm in this case: if � is
the value returned by the most recent DELETE-MIN, then the priority queue only
contains keys �� � � �� � � � � � � ��	. This is because each element in the queue has
key at least �, and is either not a neighbor of any vertex that has been removed from
the queue (in which case its key is still), or it is a neighbor of a vertex that has
been removed. Such a neighbor is within � of the source vertex, so the vertex in
question would have key at most �� �. Therefore by keeping an array as our priority
queue (with �� � ��� � entries), we can implement DELETE-MIN in ���� time by
straightforward search in the array, for a new total running time of ��� �
�.

We can also make a direct transformation to a BFS problem, in the following way:
split each edge with weight � � � into � edges (by adding � � � nodes in between).
Contract (i.e., merge) vertices connected by edges of weight �. This transformation
increases the size of the graph by a factor of at most � (a constant), so the number of
nodes in the new graph is still ��� �, and the number of edges ��
�. Therefore we
can run a breadth-first search in time ��� �
�.

(b) (Note the correction to the original problem set: the desired time is�����
� �	 �	
�.)
Note that the priorities in the queue are the lengths of paths, so they may be up to
length
� . Use a van Emde Boas queue, with universe
� � � �
� �, in Dijkstra’s al-
gorithm. Beacuse
 � � , the running time of a vEB operation is ���	 �	
� � �
���	 �	
�� � ���	 �	
�., Instead of decreasing keys (which we don’t know how to

Handout 26: Problem Set 7 Solutions 5

do for vEB queues), we simply remove the old key and insert the new one. This
is done at most �
� times, so by modifying the analysis of the algorithm, we get a
���� �
� �	 �	
� running time.

(c) Store a bit vector of length
, initially all zeros. To insert an element with key �, set bit
� to 1 (and update any pointers to auxiliary data). Maintain an index to which key the
last DELETE-MIN returned. The DELETE-MIN procedure works as follows: starting
from the current index, find the smallest key that exists in the queue (i.e., the index of
the first non-zero bit) and return its element. Update the index accordingly. The total
time over a sequence of ! operations is ��
� to make at most one full pass over the
bit vector, plus ��!� to do the deletions, for ��
� !� as desired.

(d) We can use the monotone priority queue exactly as described above in Dijkstra’s al-
gorithm. We perform ���� �� DELETE-MIN operations, so the running time becomes
���� �� �
��
�.

