Problem Set 7 Solutions

(Exercises were not to be turned in, but we're providing the solutions for your own interest.)
Exercise 7-1. When n is a power of 3, we divide each polynomial into three parts, grouping coefficients for those terms having degrees 0,1 , and $2 \bmod 3$. Formally, $A(x)=A_{0}\left(x^{3}\right)+$ $x A_{1}\left(x^{3}\right)+x^{2} A_{2}\left(x^{3}\right)$, where A_{i} has the coefficients of A for only those terms have degrees that are $i \bmod 3$. The recurrence for the new algorithm is $T(n)=3 T(n / 3)+\Theta(n)$, which by the Master Theorem solves to $T(n)=\Theta(n \log n)$.

Exercise 7-2. The total running time for the i th operations, where i is a power of 2 , is $1+2+$ $\cdots+2^{\lfloor\lg n\rfloor}=2^{\lfloor\lg n\rfloor+1}-1=\Theta(n)$. The total running time of the other operations is $n-\lfloor\lg n\rfloor$. Therefore the amortized cost per operation is $\Theta(1)$.

Exercise 7-3. The potential function is (a constant multiple c of) the sum of the depths of all the nodes in the heap. We sketch why this works: for INSERT, the actual amount of work done is $\Theta(\log n)$, and the potential function increases by $\Theta(\log n)$ because a new element is added to the tree. For Delete-Min, the actual work done is again $\Theta(\log n)$ plus $O(1)$. However, the potential decreases by $c \log n$ because an element is removed. If we choose c to match the constant hidden in the $\Theta(\log n)$, then the decrease in potential cancels out the real work that is done, leaving $\Theta(1)$ amortized cost.

Note that this result is just the result of "clever accounting," and not anything earth-shattering. In any application of a min-heap, the number of INSERT operations must be at least the number of DELETE-MIN operations, so the running time is dominated by the insertions.

Exercise 7-4. To compute the transpose for an adjacency-list representation, we make a new array of adjacency lists for G^{T}.. We walk down each adjacency list of G. On the list for node u, when encountering a node v, we add u to the front of v 's list in G^{T}. Each step takes $O(1)$ time, so the total time is $O(V+E)$.
For an adjacency-matrix representation, we merely need to compute the transpose matrix. This can be done in $O\left(V^{2}\right)$ time.

Exercise 7-5. (Trivia: this problem is otherwise known as "testing whether a given graph is bipartite.") The wrestlers correspond to nodes in a graph, and their rivalries correspond to edges. Pick an arbitrary vertex s and run a breadth-first search from s to produce a vector d of shortest path lengths from s. (If the graph is unconnected, run BFS on each of its components.) Then iterate over the edges: if (u, v) is an edge and $d[u]$ and $d[v]$ have the same parity (i.e., both even or both odd), then output "no designation." If every edge passes this test, output all u such that $d[u]$ is even as the good guys, and all v such that $d[v]$ is odd as the bad guys.
First, note that if all the edge tests are passed, then the designation is a proper one, because every rivalry is between a good and bad guy. Now suppose some test is not passed for an edge (u, v) : in
any designation, u and v must be of the same type because they are the same number of "hops" from s. But this means the rivalry between u and v is not satisfied. Thus, there is no valid designation.

The running time is clear: BFS takes linear time $O(n+r)$, and iterating over the edges takes $O(r)$ time, for $O(n+r)$ total.

Exercise 7-6. The graph is on four vertices s, t, u, v, where $w(s, u)=4, w(s, t)=2, w(u, t)=$ -2 , and $w(t, v)=1$. Starting from s, we set $d[t]=2$ and $d[u]=4$. Therefore t is extracted, so we set $d[v]=d[t]+1=3$. Next v is extracted, and no changes are made to d. Finally u is extracted, and we set $d[t]=d[u]+-2=2$, then the algorithm terminates. Note that the shortest path to v is s, u, t, v, and has length 3 . However, at the end of the algorithm, $d[v]=4$ (corresponding to the path s, t, v).

The proof of Theorem 24.6 fails where (on page 598, end of second paragraph) it claims that $\delta(s, y) \leq \delta(s, u)$ "because y occurs before u on a shortest path from s to u and all edge weights are nonnegative." In fact, we see in the above example that this is not the case: the shortest path from s to t is s, u, t and has length 2, but the shortest path from s to u has length 4 . Therefore the proof of correctness is no longer sound.

Problem 7-1. Maximum Spanning Tree

We note that this problem is very similar to the minimum spanning tree problem. One correct solution involves a direct transformation, by negating all the edge weights of G and running Prim's (or Kruskal's) algorithm on the resulting graph G^{\prime}. (These algorithms work properly even with negative edge weights.) A minimum spanning tree on G^{\prime} is a maximum spanning tree on G, because a tree in G^{\prime} is a tree in G and vice versa, and because the weight of a tree in G^{\prime} is negated in G.

Another way to solve this problem is by noticing a greedy-choice property, similar to that of the minimum spanning tree (and proven in a very similar way): in any maximum spanning tree T, if we remove an edge (u, v) to yield two trees R, S, then R and S are maximum spanning trees on their respective vertices, and (u, v) is a heaviest edge crossing between those sets of vertices. With this in mind, we can use Prim's algorithm with a max-heap, or Kruskal's algorithm with the edges sorted in descending order of weights, to find a maximum spanning tree. The running times remain unchanged.

Problem 7-2. Toeplitz Matrices

(a) The sum is Toeplitz. If we are adding matrices A and B (with entries $a_{i, j}$ and $b_{i, j}$, respectively), then the sum C (with entries $c_{i, j}$) has

$$
c_{i, j}=a_{i, j}+b_{i, j}=a_{i-1, j-1}+b_{i-1, j-1}=c_{i-1, j-1}
$$

as desired.

The product is not necessarily Toeplitz. Here is a counterexample:

$$
\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right)=\left(\begin{array}{ll}
5 & 2 \\
2 & 1
\end{array}\right)
$$

(b) Note that there are only $2 n-1$ diagonals in an $n \times n$ matrix, and the values on a diagonal are all the same. Therefore we need only a $(2 n-1)$-coordinate vector to represent an $n \times n$ Toeplitz matrix. Specifically, the vector is a tuple of the elements $a_{1, n}, a_{1, n-1}, \ldots, a_{1,1}, a_{2,1}, \ldots, a_{n, 1}$. Adding two matrices is done by adding their representative vectors, entry-by-entry. This takes only $O(n)$ time (and space).
(c) Let the input vector be a column vector $\vec{b}=\left(b_{1}, \ldots, b_{n}\right)^{T}$, and call the product $\vec{c}=$ $\left(c_{1}, \ldots c_{n}\right)^{T}$. Suppose also that we are representing the Toeplitz matrix A by the vector \vec{a} described above. Then by the definition of Toeplitz and matrix multiplication, we have

$$
c_{i}=\sum_{j=1}^{n} a_{n+i-j} b_{j}=\sum_{j=1}^{2 n-1} a_{n+i-j} b_{j},
$$

where we adopt the convention that $b_{j}=0$ when $j>n$, and $a_{j}=0$ when $j \leq 0$. But now we see that the coefficient c_{i} is just the coefficient of the degree- $(n+i)$ term of the product of polynomials a and b, whose representations are given in coefficient form by the vectors \vec{a}, \vec{b}. These polynomials have degree $O(n)$, so we can multiply them in $O(n \log n)$ time, as desired.

Problem 7-3. Amortized Queues

(a) The total work is $3+(6+2)+3+(1+6+1)=22$. At the end, S_{1} has 0 elements, and S_{2} has 2 .
(b) An insertion always takes 1 unit, so our worst-case cost must be caused by a removal. No more that n elements can ever be in S_{1}, and no fewer than 0 elements can be in S_{2}. Therefore the worst-case cost is $2 n+1: 2 n$ units to dump, and one extra to pop from S_{2}. This bound is tight, as seen by the following sequence: perform n insertions, then n removals. The first removal will cause a dump of n elements plus a pop, for $2 n+1$ work.
(c) The tightest amortized upper bounds are 3 units per insertion, and 1 unit per removal. We will prove this 2 ways (using the accounting and potential methods; the aggregate method seems too weak to employ elegantly in this case). (We would also accept valid proofs of 4 units per insertion and 0 per removal, although this answer is looser than the one we give here.)
Here is an analysis using the accounting method: with every insertion we pay $\$ 3$: $\$ 1$ is used to push onto S_{1}, and the remaining $\$ 2$ remain attached to the element just inserted. Therefore every element in S_{1} has $\$ 2$ attached to it. With every removal we pay $\$ 1$, which will (eventually) be used to pop the desired element off of S_{2}. Before
that, however, we may need to dump S_{1} into S_{2}; this involves popping each element off of S_{1} and pushing it onto S_{2}. We can pay for these pairs of operations with the $\$ 2$ attached to each element in S_{1}.
Now we analyze the structure using the potential method: let $\left|S_{1}^{i}\right|$ denote the number of elements in S_{1} after the i th operation. Then the potential function ϕ on our structure Q_{i} (the state of the queue after the i th operation) is defined to be $\phi\left(Q_{i}\right)=2\left|S_{1}^{i}\right|$. Note that $\left|S_{1}^{i}\right| \geq 0$ at all times, so $\phi\left(Q_{i}\right) \geq 0$. Also, $\left|S_{1}^{0}\right|=0$ initially, so $\phi\left(Q_{0}\right)=0$ as desired.
Now we compute the amortized costs: for an insertion, we have $S_{1}^{i+1}=S_{1}^{i}+1$, and the actual cost $c_{i}=1$, so

$$
\hat{c_{i}}=c_{i}+\phi\left(Q_{i+1}\right)-\phi\left(Q_{i}\right)=1+2\left(S_{1}^{i}+1\right)-2\left(S_{1}^{i}\right)=3 .
$$

For a removal, we have two cases. First, when there is no dump from S_{1} to S_{2}, the actual cost is 1 , and $S_{1}^{i+1}=S_{1}^{i}$. Therefore $\hat{c_{i}}=1$. When there is a dump, the actual cost is $2\left|S_{1}^{i}\right|+1$, and we have $S_{1}^{i+1}=0$. Therefore we get

$$
\hat{c_{i}}=\left(2\left|S_{1}^{i}\right|+1\right)+0-2\left|S_{1}^{i}\right|=1
$$

as desired.

Problem 7-4. Shortest-Path Special Cases

(a) We make the following observation about Dijkstra's algorithm in this case: if i is the value returned by the most recent DELETE-Min, then the priority queue only contains keys $i, i+1, \ldots, i+C, \infty$. This is because each element in the queue has key at least i, and is either not a neighbor of any vertex that has been removed from the queue (in which case its key is still ∞), or it is a neighbor of a vertex that has been removed. Such a neighbor is within i of the source vertex, so the vertex in question would have key at most $i+C$. Therefore by keeping an array as our priority queue (with $C V=O(V)$ entries), we can implement DELETE-Min in $O(1)$ time by straightforward search in the array, for a new total running time of $O(V+E)$.
We can also make a direct transformation to a BFS problem, in the following way: split each edge with weight $w>0$ into w edges (by adding $w-1$ nodes in between). Contract (i.e., merge) vertices connected by edges of weight 0 . This transformation increases the size of the graph by a factor of at most C (a constant), so the number of nodes in the new graph is still $O(V)$, and the number of edges $O(E)$. Therefore we can run a breadth-first search in time $O(V+E)$.
(b) (Note the correction to the original problem set: the desired time is $O((V+E) \lg \lg u)$.) Note that the priorities in the queue are the lengths of paths, so they may be up to length $u V$. Use a van Emde Boas queue, with universe $\{0 \ldots u V\}$, in Dijkstra's algorithm. Beacuse $u>V$, the running time of a vEB operation is $O(\lg \lg u V)=$ $O\left(\lg \lg u^{2}\right)=O(\lg \lg u)$., Instead of decreasing keys (which we don't know how to
do for vEB queues), we simply remove the old key and insert the new one. This is done at most $|E|$ times, so by modifying the analysis of the algorithm, we get a $O((V+E) \lg \lg u)$ running time.
(c) Store a bit vector of length u, initially all zeros. To insert an element with key x, set bit x to 1 (and update any pointers to auxiliary data). Maintain an index to which key the last Delete-Min returned. The Delete-Min procedure works as follows: starting from the current index, find the smallest key that exists in the queue (i.e., the index of the first non-zero bit) and return its element. Update the index accordingly. The total time over a sequence of k operations is $O(u)$ to make at most one full pass over the bit vector, plus $O(k)$ to do the deletions, for $O(u+k)$ as desired.
(d) We can use the monotone priority queue exactly as described above in Dijkstra's algorithm. We perform $O(|V|)$ Delete-Min operations, so the running time becomes $O(|V|+|E|+u)$.

