
Homework 6 Solutions

1. 22.2-6 (pg. 539)

There are two types of professional wrestlers: good guys, and bad guys. Between
any pair of professional wrestlers, there may or may not be a rivalry. Suppose that
we have n professional wrestlers and we have a list of r pairs of wrestlers for
which there are rivalries. Give an O(n + r)-time algorithm that determines whether
it is possible to designate some of the wrestlers as good guys and the remainder as
bad guys such that each rivalry is between a good guy and a bad guy. If it is
possible to perform such a designation your algorithm should produce it.

Assumptions:
1. A rivalry (A, B) represents the fact that A has a rivalry with B. It does not
specify whether or not A or B is the good or bad guy.
2. Some wrestlers may not be involved in rivalries. These wrestlers are neither
good guys nor bad guys. The algorithm is not concerned with them.
3. Any possible solution of good guys and bad guys is acceptable. For example,
consider the following setup:

Wrestlers = {A, B, C, D, E}, Rivalries = { (A, B), (B, C), (D, E) }

There are four possible solutions for this set up:

1. Good guys = {A, C, D}, Bad guys = {B, E}
2. Good guys = {A, C, E}, Bad guys = (B, D}
3. Good guys = {B, E}, Bad guys = {A, C, D}
4. Good guys = {B, D}, Bad guys = {A, C, E}

An correct algorithm could return any one of these solutions.

Setup: We represent the rivalries as a graph, G = (V, E). The vertices are the
wrestlers, and the edges are the rivalries. Therefore, |V| = n, and |E| = r.

Algorithm:
1. Discard all vertices of degree 0. These are wrestlers who have no rivalries. We

are not concerned with them.
2. Separate all connected components of the remaining graph. Process each

component individually in the following steps.
3. Let C = (Vc, Ec) be the connected component. Choose one vertex r at random

(or deterministically-it doesn’t matter) from Vc. Without loss of generality
(remember, any possible solution, is correct), let r be classified as a Good guy.

4. Run a modified breadth-first search from the root. Instead of maintaining d[]
and f[] arrays, save the path-length from each vertex to r. All vertices with odd
path lengths to r are Bad guys; all vertices with even path lengths to r are
Good guys.

5. Examine every edge in Ec. If the edge is between two vertices whose path
lengths to r are both even or both odd, then we have established a rivalry
between two Good or Bad guys. If this is the case, we return false – it is not
possible to partition the wrestlers.

6. If we are able to examine every edge in every connected component without
returning false, then we have successfully partitioned the wrestlers in step 4.

Complexity: The major time-related component of this algorithm is the breadth-
first search, which has O(V + E) time.

2. 22.2-8 (pg. 539)

Let G = (V, E) be a connected, undirected graph. Give an O(V + E)-time
algorithm to compute a path in G that traverses each edge in E exactly once in
each direction. Describe how you can find your way out of a maze if you are
given a large supply of pennies.

To solve this problem, we use a variant of depth-first search. Every edge is
marked the first and second time it is traversed with unique marks for each
traversal. Edges that have been traversed twice may not be taken again.

Our depth-first search algorithm must ensure that all edges all explored, and that
each edge is taken in both directions. To ensure that all edges are explored, the
algorithm must ensure that unexplored edges are always taken before edges that
are explored once. To ensure that edges are taken in each direction, we simply
backtrack every time the depth-first search reaches a dead-end. The search keeps
backtracking until a new unexplored edge is found. This way, edges are only
explored in the reverse direction during the backtracking.

Complexity: This algorithm is based on depth-first search, which has time
complexity O(V+ E).

3. 2.3-4 (pg. 548)

a.) Show that edge (u, v) is a tree edge or forward edge if and only if
d[u] < d[v] < f[v] < f[u]

 Proof:

: Assume that edge (u, v) is a tree or forward edge. If (u, v) is a tree
edge, then by the definition of tree edge v is first discovered by
exploring edge (u, v). If (u, v) is a forward edge, then by the definition
of forward edge v is an ancestor of u. In either case, d[u] < d[v]. Since
v was discovered after u, then must be finished prior to u being
finished, hence f[v] < f[u]. Every vertex must be discovered before it
can be finished, so d[v] < f[v]. Putting all three inequalities together
yields d[u] < d[v] < f[v] < f[u].

: Assume that for vertices u and v, d[u] < d[v] < f[v] < f[u]. d[v] < f[v]
can be established trivially. d[u] < d[v] and f[v] < f[u] imply that v was
discovered after u, and finished before u. Therefore, edge (u, v) is a
tree edge if v was discovered by traversing edge (u, v). Otherwise, (u,
v) is a forward edge.

b.) Show that edge (u, v) is a back edge if and only if d[v] < d[u] < f[u] < f[v]

Proof:

: Assume that edge (u, v) is a back edge. Then by definition, v is an
ancestor of u, so d[v] < d[u]. Since v was discovered before u, u will
finish before v finishes. Hence, f[u] < f[v]. d[u] < f[u] can be
established trivially. Therefore d[v] < d[u] < f[u] < f[v].

: Assume d[v] < d[u] < f[u] < f[v]. f[u] < f[v] and d[v] < d[u] imply that

v was discovered before u and finished after u. Therefore v is an
ancestor of u. Therefore (u, v) is a back edge.

c.) Show that edge (u, v) is a cross edge if and only if d[v] < f[v] < d[u] < f[u]

Proof:
: Assume that edge (u, v) is a cross edge. Therefore, there is no parental

or ancestral relationship between u and v. d[u] < f[u] and d[v] < f[v]
can be established trivially. If d[u] < d[v], then edge (u, v) would
indicate a parental relationship between u and v in the depth-first tree,
which cannot happen by the definition of cross edge. Hence, d[u] >
d[v]. Similarly, we cannot have d[u] < f[v], because this would
indicate that v was finished (but not discovered) after u was
discovered, but before u was finished, which cannot happen.
Therefore, d[v] < f[v] < d[u] < f[u]

: Assume d[v] < f[v] < d[u] < f[u]. Since f[v] < d[u]], there is no

parental or ancestral relationship between u and v. Therefore edge (u,
v) is a cross edge.

4. 22.3-8 (pg. 548)

Give a counterexample to the conjecture that if there is a path from u to v in a
directed graph G, then any depth-first search must result in d[v] < f[u].

 d f
s 1 6
u 4 5
v 2 3

vu

s

We perform a DFS starting at vertex s. We then discover vertex u. Since the only
edge out of u is (u, s), and s has been found, we finish u. Next, we discover and
finish v. Finally, we finish s.

5. 22.4-2 (pg. 552)

Give a linear-time algorithm that takes as input a directed acyclic graph G = (V,
E) and two vertices s and t, and returns the number of paths from s to t in G.

The basic idea here is to start at vertex t, and use depth-first search in reverse
direction until we reach vertex s. Each and maintains a counter which indicates
the number of unique reverse paths found from vertex t.

1. Initialize counters to 0 for all vertices.
2. Start depth-first-search in reverse direction using vertex t as a root.
3. For each edge (u, v) examined in the breadth-first search.

Counter(v) = max{ Counter(v) + 1, Counter(v) + Counter(u) }
4. Return Counter(s)

