
Homework 6 Solutions 
 

1. 22.2-6 (pg. 539) 
 

There are two types of professional wrestlers: good guys, and bad guys. Between 
any pair of professional wrestlers, there may or may not be a rivalry. Suppose that 
we have n professional wrestlers and we have a list of r pairs of wrestlers for 
which there are rivalries. Give an O(n + r)-time algorithm that determines whether 
it is possible to designate some of the wrestlers as good guys and the remainder as 
bad guys such that each rivalry is  between a good guy and a bad guy. If it is 
possible to perform such a designation your algorithm should produce it. 
 
Assumptions: 
1. A rivalry (A, B) represents the fact that A has a rivalry with B. It does not 
specify whether or not A or B is the good or bad guy. 
2. Some wrestlers may not be involved in rivalries. These wrestlers are neither 
good guys nor bad guys. The algorithm is not concerned with them. 
3. Any possible solution of good guys and bad guys is acceptable. For example, 
consider the following setup: 
 
Wrestlers = {A, B, C, D, E}, Rivalries = { (A, B), (B, C), (D, E) } 
 
There are four possible solutions for this set up: 
 
1. Good guys = {A, C, D}, Bad guys = {B, E} 
2. Good guys = {A, C, E}, Bad guys = (B, D} 
3. Good guys = {B, E}, Bad guys = {A, C, D} 
4. Good guys = {B, D}, Bad guys = {A, C, E} 
 
An correct algorithm could return any one of these solutions. 
 
Setup: We represent the rivalries as a graph, G = (V, E). The vertices are the 
wrestlers, and the edges are the rivalries. Therefore, |V| = n, and |E| = r. 
 
Algorithm: 
1. Discard all vertices of degree 0. These are wrestlers who have no rivalries. We 

are not concerned with them. 
2. Separate all connected components of the remaining graph. Process each 

component individually in the following steps. 
3. Let C = (Vc, Ec) be the connected component. Choose one vertex r at random 

(or deterministically-it doesn’t matter) from Vc. Without loss of generality 
(remember, any possible solution, is correct), let r be classified as a Good guy.  

4. Run a modified breadth-first search from the root. Instead of maintaining d[] 
and f[] arrays, save the path-length from each vertex to r. All vertices with odd 
path lengths to r are Bad guys; all vertices with even path lengths to r are 
Good guys. 



5. Examine every edge in Ec. If the edge is between two vertices whose path 
lengths to r are both even or both odd, then we have established a rivalry 
between two Good or Bad guys. If this is the case, we return false – it is not 
possible to partition the wrestlers. 

6. If we are able to examine every edge in every connected component without 
returning false, then we have successfully partitioned the wrestlers in step 4. 

 
Complexity: The major time-related component of this algorithm is the breadth-
first search, which has O(V + E) time.  
 

2. 22.2-8 (pg. 539) 
 
Let G = (V, E) be a connected, undirected graph. Give an O(V + E)-time 
algorithm to compute a path in G that traverses each edge in E exactly once in 
each direction. Describe how you can find your way out of a maze if you are 
given a large supply of pennies. 
 
To solve this problem, we use a variant of depth-first search. Every edge is 
marked the first and second time it is traversed with unique marks for each 
traversal. Edges that have been traversed twice may not be taken again.  
 
Our depth-first search algorithm must ensure that all edges all explored, and that 
each edge is taken in both directions. To ensure that all edges are explored, the 
algorithm must ensure that unexplored edges are always taken before edges that 
are explored once. To ensure that edges are taken in each direction, we simply 
backtrack every time the depth-first search reaches a dead-end. The search keeps 
backtracking until a new unexplored edge is found. This way, edges are only 
explored in the reverse direction during the backtracking. 
 
Complexity: This algorithm is based on depth-first search, which has time 
complexity O(V+ E). 

 
3. 2.3-4 (pg. 548) 
 

a.) Show that edge (u, v) is a tree edge or forward edge if and only if  
d[u] < d[v] < f[v] < f[u] 

 
  Proof: 

: Assume that edge (u, v) is a tree or forward edge. If (u, v) is a tree 
edge, then by the definition of tree edge v is first discovered by 
exploring edge (u, v). If (u, v) is a forward edge, then by the definition 
of forward edge v is an ancestor of u. In either case, d[u] < d[v]. Since 
v was discovered after u, then must be finished prior to u being 
finished, hence f[v] < f[u]. Every vertex must be discovered before it 
can be finished, so d[v] < f[v]. Putting all three inequalities together 
yields d[u] < d[v] < f[v] < f[u]. 



: Assume that for vertices u and v, d[u] < d[v] < f[v] < f[u]. d[v] < f[v] 
can be established trivially. d[u] < d[v] and f[v] < f[u] imply that v was 
discovered after u, and finished before u. Therefore, edge (u, v) is a 
tree edge if v was discovered by traversing edge (u, v). Otherwise, (u, 
v) is a forward edge. 

 
b.) Show that edge (u, v) is a back edge if and only if d[v] < d[u] < f[u] < f[v] 

 
Proof: 

: Assume that edge (u, v) is a back edge. Then by definition, v is an 
ancestor of u, so d[v] < d[u]. Since v was discovered before u, u will 
finish before v finishes. Hence, f[u] < f[v]. d[u] < f[u] can be 
established trivially. Therefore d[v] < d[u] < f[u] < f[v]. 

 
: Assume d[v] < d[u] < f[u] < f[v]. f[u] < f[v] and d[v] < d[u] imply that 

v was discovered before u and finished after u. Therefore v is an 
ancestor of u. Therefore (u, v) is a back edge. 

 
c.) Show that edge (u, v) is a cross edge if and only if d[v] < f[v] < d[u] < f[u] 
 

Proof: 
: Assume that edge (u, v) is a cross edge. Therefore, there is no parental 

or ancestral relationship between u and v. d[u] < f[u] and d[v] < f[v] 
can be established trivially. If d[u] < d[v], then edge (u, v) would 
indicate a parental relationship between u and v in the depth-first tree, 
which cannot happen by the definition of cross edge. Hence, d[u] > 
d[v]. Similarly, we cannot have d[u] < f[v], because this would 
indicate that v was finished (but not discovered) after u was 
discovered, but before u was finished, which cannot happen. 
Therefore, d[v] < f[v] < d[u] < f[u] 

 
: Assume d[v] < f[v] < d[u] < f[u]. Since f[v] < d[u]], there is no 

parental or ancestral relationship between u and v. Therefore edge (u, 
v) is a cross edge. 



 
4. 22.3-8 (pg. 548) 
 

Give a counterexample to the conjecture that if there is a path from u to v in a 
directed graph G, then any depth-first search must result in d[v] < f[u]. 
 
 

  d f 
s 1 6 
u 4 5 
v 2 3 

vu

s

 
 

  
We perform a DFS starting at vertex s. We then discover vertex u. Since the only 
edge out of u is (u, s), and s has been found, we finish u. Next, we discover and 
finish v. Finally, we finish s. 

 
5. 22.4-2 (pg. 552) 
 

Give a linear-time algorithm that takes as input a directed acyclic graph G = (V, 
E) and two vertices s and t, and returns the number of paths from s to t in G. 
 
The basic idea here is to start at vertex t, and use depth-first search in reverse 
direction until we reach vertex s. Each and maintains a counter which indicates 
the number of unique reverse paths found from vertex t. 
 
1. Initialize counters to 0 for all vertices. 
2. Start depth-first-search in reverse direction using vertex t as a root. 
3. For each edge (u, v) examined in the breadth-first search. 

Counter(v) = max{ Counter(v) + 1, Counter(v) + Counter(u) } 
4. Return Counter(s) 
 


