McGill University COMP251: Assignment 2 Solution

Question 1 The partition procedure on a sorted array of length n always gives an empty subarray
and an subarray of length n — 1. So in this case the running time T'(n) of Quicksort satisfies:

T(n)=T(n—1)+06(n)

So we have

=T(n-2)+6(mn—1)+6(n)
=T(n—3)+0O(n—2)+06(n—1)+06(n)
:'T(l) +0(2)+63)+...+6(n—1)+06(n)
= 0(n?)

As a result, T'(n) = Q(n?).

Question 2 (a) For an array A that is sorted in increasing order, the pairs (i,7) satisfying the
given condition are

(1,2),(1,3),...,(1,n), (2,3),(2,4),...,(2,n), ...,(n—1,n)
The number of such pairs is

(n—1)n

n—1)+n—-2)+...+1= 5

(b) The idea for a divide-and-conquer algorithm is as follows. Given a subarray A[¢ ... r], we
count the number of pairs (7,7) that satisfy the given condition (i.e., i < j and A[i] < A[j]) by
dividing A[¢ ... r] into two halves A[¢ ... m] and A[(m+1) ...r|, and summing up the following
numbers:

1. the number of such pairs where ¢ < < j < m, and
2. the number of such pairs where m +1 <17 < j <r, and
3. the number of such pairs where i <m and m+1<j

The first two quantities are computed recursively, and we are looking for a way to compute the last
quantity in time O(r — /), so that the total running time will satisfy

T(n) =2T(n/2) + O(n)

and the Master Theorem gives T'(n) = O(nlnn).

(Note that a brute-force way of computing the last quantity above-by comparing all number in
the first half with all number in the second half-requires (7"—53)2 comparisons, so the running time
would satisfy

T(n) = 2T(n/2) + O(n?)



and we would get T'(n) = ©(n?), which is not good.)

The number of pairs in (3) above can be computed without performing (TT_Z)2 comparisons
if the two halves A[¢ ... m] and A[(m + 1) ...r| are already sorted in increasing order. For
example, suppose that they are already sorted, and suppose that A[¢] < A[m + 1], then we also
have A[{] < A[j] for all j in the second half. So we know that ¢ is present in exactly (r —m) pairs

(,m+1),(¢,m+1),...,(¢r)

The following procedure, Combine-and-count, is obtained by modifying the Combine procedure
given in lecture. Combine-and-count(A, ¢, m,r) assumes that £ < m < r and that the two subarray
All ... m] and A[(m + 1) ... r] are already sorted in increasing order. It will sort the subarray
A[¢ ... r] into increasing order and output the number of pairs (4, j) such that i < m and m+1 < j
and Afi] < A[j] (as in (3) above).

Combine-and-count (A, ¢, m,r):

1. % first copy A[¢ ... m] into a separate array B[l ... (m —{+1)]
2. 5«1

3. for ¢ from ¢ to m do

1 Bl — Al

5. jej—+1

6. end for

7. % now merge B[l ... (m—{¢+1)] and A[(m+1) ... r]in to A[¢ ... 7]
at the same time count the number of pairs (7, ) such that £ <i <m, m+1 < j <r and

Ali] < Alj]

8. i+ 1 % current index in B

9. j—m+1 % current index in A[(m+1) ... 7]
10. k «— ¢ % current index in the final subarray
11. count <— 0 % the number of pairs to be output
12. while i <m —1+1do % loop while there are still elements in B
13.  if j>r % if we have gone through A[(m+1) ... r]:

14. Alk] < B[i] % simply copy the remaining elements in B into A, no more pair to count
15. i—i+1, k—k+1

16.  else do % compare B[i] and A[j]

17. if A[j] < B[i] do % j does not contribute to the count

18. Alk] — A[j] % copy A[j] to its proper location



19.
20.
21.
22.
23.
24.
25.
26.
27.

The algorithm that solve the given algorithm is Sort-and-count given below.

e+l k—k+1
else do
Alk] <« BJi]
count « count + (r — j+ 1) % i contributes (r — j + 1) pairs
t—i1+1, k—k+1
end if
end if
end while

output count

Sort-and-count (A, ¢, r):

1.
2.

3.

10.
11.
12.

(c) The Combine-and-count procedure goes through all elements in the subarray A[¢ ...

if / =7 return 0 % there is only one element

elseif ¢ +1 =17 % there are two elements

if A[¢f] < A[r] output 1 % there is only one pair
else
swap A[l] < Alr] and output 0
end if
end if
. m«— [87] % mid-point

. ¢1 < Sort-and-count(A, ¢, m)

cg «— Sort-and-count(A,m + 1,r)
¢ «+ Combine-and-count (A, ¢, m, )

return ¢; +co + ¢

r] at

most once, so it runs in linear time. Therefore the running time 7'(n) of Sort-and-count on input
array of length n satisfies

T(n)=2T(n/2)+ O(n)

(There are two recursive calls to subproblem of length n/2 each.) Apply the Master Theorem for
a=b=2,d=1 we obtain

T(n) =0O(nlnn)



Question 3 (a) An array A represents a ternary heap as follows: A[1] is the root, its children are
A[2], A[3], A[4]. In general, the children of A[i] are A[3i — 1], A[3i], A[3i + 1]. The parent node of
Ali], for ¢ > 1, is A[[(¢ +1)/3]]. As for binary heap, there is a heap size heapsize(A) which is at
most as large as length(A).

(b) A full ternary tree of height h has

3h+1_1
1+3+32+...+3h:T

Since the ternary heap is a near complete ternary tree with all level complete except possibly the
last, the height h of a ternary heap with n elements satisfies

3h—1 ghtl _q
<n< ——

Thus
3h <on+1<3ht!

So
h <logs(2n+1) <h+1

Therefore h = [logs(2n +1)] — 1.

(c) The Heapify3 procedure is a modification of Max-Heapify given in lecture. It assumes that
the subtrees at A[3i — 1], A[3i], and A[3i + 1] are already ternary heaps, but A[i] might be smaller
than one of its children and thus violating the max-heap property. It will float A[i] down the
subtree of its largest children.

Heapify3(A,i):

1. % first get the index of the largest element among A[i], A[3i — 1], A[3i], A[3i + 1]
2. if 3i — 1 < heapsize(A) and A[3i — 1] > Ali] do
3. largest «— 3i — 1
4. else largest < 1
5. if 3i < heapsize(A) and A[3i] > A[largest] do
6. largest < 3i
7. end if
8. if 3i + 1 < heapsize(A) and A[3i + 1] > A[largest] do
9. largest «— 31+ 1
10. end if
11. % now Allargest] is the largest element among A[i|, A[3i — 1], A[3i], A[3i + 1]
12. if largest # i do

13.  swap A[i] < Allargest]



14. Heapify3(A,largest)
15. end if

(d) Heapsort3 works in the same way as the algorithm Heapsort given in class. It uses the
following Build-max-heap3 procedure, which constructs a ternary heap from the given array A:
Build-max-heap3(A)

1. heapsize(A) < length(A)

2. for i from |length(A)/2] down to 1 do
3. Heapify3(A,i) % turn the ternary subtree at A[i] into a ternary heap
4. end for

Heapsort3(A)

1. Build-max-heap3(A)

2. for i from length(A) down to 2 do

3. swap A[l] « AJf]

4.  heapsize(A) «— heapsize(A) — 1

5. Heapify3(A,1)

6. end for

(e) The running time of Heapify3 on a subtree of height h is O(h), because we perform at
most a constant number of operation on each level of the tree. Therefore the running time of
Build-max-heap3 is at most

g(’)(ln n) = O(nlnn)

(because from (b) the height of the ternary heap is ©(Inn)).
The for-loop in Heapsort3 has 7 iterations, each iteration takes time at most O(Inn). Therefore
the total time of Heapsort3 is

O(nlnn) 4+ O(nlnn) = O(nlnn)

Question 4 The idea is to use the “counting array” C from the counting sort algorithm given in
lecture. We want the array C' (with indices from 0 to k) so that C[z] is the number of elements
Ali] such that Afi] < z.

The preprocessing procedure will compute such a C'. Then to answer the query of how many
Ali] such that a < A[i] < b there are, simply give

C[b] — Cla — 1] ifa>1

(if @ = 0 then take C[b]).
The pseudo-code for the preprocessing procedure is as follows:



10.
11.

12.

. % the following for-loop initializes counting array C"

. for z from 0 to k do

Clz] <0

. end for
. % the next for-loop makes each C[z] be the number of i such that A[i] = z:

. for ¢ from 1 to length(A) do

ClA[i]] «— C[A[{]] +1

. end for

. % sum up: each C[z] will be the number of i such that Afi] < z:

for x from 1 to k do
Clz] < Clz] + Clz — 1]

end for



