McGill University COMP251: Assignment 2 Solution

Question 1 The partition procedure on a sorted array of length n always gives an empty subarray and an subarray of length $n-1$. So in this case the running time $T(n)$ of Quicksort satisfies:

$$
T(n)=T(n-1)+\Theta(n)
$$

So we have

$$
\begin{aligned}
T(n) & =T(n-1)+\Theta(n) \\
& =T(n-2)+\Theta(n-1)+\Theta(n) \\
& =T(n-3)+\Theta(n-2)+\Theta(n-1)+\Theta(n) \\
& \ldots \\
& =T(1)+\Theta(2)+\Theta(3)+\ldots+\Theta(n-1)+\Theta(n) \\
& =\Theta\left(n^{2}\right)
\end{aligned}
$$

As a result, $T(n)=\Omega\left(n^{2}\right)$.
Question 2 (a) For an array A that is sorted in increasing order, the pairs (i, j) satisfying the given condition are

$$
(1,2),(1,3), \ldots,(1, n),(2,3),(2,4), \ldots,(2, n), \ldots,(n-1, n)
$$

The number of such pairs is

$$
(n-1)+(n-2)+\ldots+1=\frac{(n-1) n}{2}
$$

(b) The idea for a divide-and-conquer algorithm is as follows. Given a subarray $A[\ell \ldots r]$, we count the number of pairs (i, j) that satisfy the given condition (i.e., $i<j$ and $A[i]<A[j])$ by dividing $A[\ell \ldots r]$ into two halves $A[\ell \ldots m]$ and $A[(m+1) \ldots r]$, and summing up the following numbers:

1. the number of such pairs where $\ell \leq i<j \leq m$, and
2. the number of such pairs where $m+1 \leq i<j \leq r$, and
3. the number of such pairs where $i \leq m$ and $m+1 \leq j$

The first two quantities are computed recursively, and we are looking for a way to compute the last quantity in time $\mathcal{O}(r-\ell)$, so that the total running time will satisfy

$$
T(n)=2 T(n / 2)+\mathcal{O}(n)
$$

and the Master Theorem gives $T(n)=\mathcal{O}(n \ln n)$.
(Note that a brute-force way of computing the last quantity above-by comparing all number in the first half with all number in the second half-requires $\left(\frac{r-\ell}{2}\right)^{2}$ comparisons, so the running time would satisfy

$$
T(n)=2 T(n / 2)+\Theta\left(n^{2}\right)
$$

and we would get $T(n)=\Theta\left(n^{2}\right)$, which is not good.)
The number of pairs in (3) above can be computed without performing $\left(\frac{r-\ell}{2}\right)^{2}$ comparisons if the two halves $A[\ell \ldots m]$ and $A[(m+1) \ldots r]$ are already sorted in increasing order. For example, suppose that they are already sorted, and suppose that $A[\ell]<A[m+1]$, then we also have $A[\ell]<A[j]$ for all j in the second half. So we know that ℓ is present in exactly $(r-m)$ pairs

$$
(\ell, m+1),(\ell, m+1), \ldots,(\ell, r)
$$

The following procedure, Combine-and-count, is obtained by modifying the Combine procedure given in lecture. Combine-and-count (A, ℓ, m, r) assumes that $\ell \leq m<r$ and that the two subarray $A[\ell \ldots m]$ and $A[(m+1) \ldots r]$ are already sorted in increasing order. It will sort the subarray $A[\ell \ldots r]$ into increasing order and output the number of pairs (i, j) such that $i \leq m$ and $m+1 \leq j$ and $A[i]<A[j]$ (as in (3) above).

Combine-and-count (A, ℓ, m, r) :

1. \% first copy $A[\ell \ldots m]$ into a separate array $B[1 \ldots(m-\ell+1)]$
2. $j \leftarrow 1$
3. for i from ℓ to m do
4. $B[j] \leftarrow A[i]$
5. $\quad j \leftarrow j+1$
6. end for
7. \% now merge $B[1 \ldots(m-\ell+1)]$ and $A[(m+1) \ldots r]$ in to $A[\ell \ldots r]$
at the same time count the number of pairs (i, j) such that $\ell \leq i \leq m, m+1 \leq j \leq r$ and $A[i]<A[j]$
8. $i \leftarrow 1 \quad \%$ current index in B
9. $j \leftarrow m+1 \quad \%$ current index in $A[(m+1) \ldots r]$
10. $k \leftarrow \ell \quad \%$ current index in the final subarray
11. count $\leftarrow 0 \quad \%$ the number of pairs to be output
12. while $i \leq m-l+1$ do $\%$ loop while there are still elements in B
13. if $j>r \quad \%$ if we have gone through $A[(m+1) \ldots r]$:
14. $A[k] \leftarrow B[i] \quad \%$ simply copy the remaining elements in B into A, no more pair to count
15. $\quad i \leftarrow i+1, k \leftarrow k+1$
16. else do $\%$ compare $B[i]$ and $A[j]$
17. if $A[j]<B[i]$ do $\% j$ does not contribute to the count
18. $A[k] \leftarrow A[j] \quad \%$ copy $A[j]$ to its proper location
19. $\quad j \leftarrow j+1, k \leftarrow k+1$
20. else do
21. $\quad A[k] \leftarrow B[i]$
22. \quad count \leftarrow count $+(r-j+1) \quad \% i$ contributes $(r-j+1)$ pairs
23. $\quad i \leftarrow i+1, k \leftarrow k+1$
24. end if
25. end if
26. end while
27. output count

The algorithm that solve the given algorithm is Sort-and-count given below.
Sort-and-count (A, ℓ, r) :

1. if $\ell=r$ return $0 \quad \%$ there is only one element
2. else if $\ell+1=r \quad \%$ there are two elements
3. if $A[\ell]<A[r]$ output 1% there is only one pair
4. else
5. swap $A[\ell] \leftrightarrow A[r]$ and output 0
6. end if
7. end if
8. $m \leftarrow\left\lfloor\frac{\ell+r}{2}\right\rfloor$ \% mid-point
9. $c_{1} \leftarrow \operatorname{Sort}-\operatorname{and}-\operatorname{count}(A, \ell, m)$
10. $c_{2} \leftarrow \operatorname{Sort}$-and-count $(A, m+1, r)$
11. $c \leftarrow \operatorname{Combine-and-count}(A, \ell, m, r)$
12. return $c_{1}+c_{2}+c$
(c) The Combine-and-count procedure goes through all elements in the subarray $A[\ell \ldots r]$ at most once, so it runs in linear time. Therefore the running time $T(n)$ of Sort-and-count on input array of length n satisfies

$$
T(n)=2 T(n / 2)+\mathcal{O}(n)
$$

(There are two recursive calls to subproblem of length $n / 2$ each.) Apply the Master Theorem for $a=b=2, d=1$ we obtain

$$
T(n)=\mathcal{O}(n \ln n)
$$

Question 3 (a) An array A represents a ternary heap as follows: $A[1]$ is the root, its children are $A[2], A[3], A[4]$. In general, the children of $A[i]$ are $A[3 i-1], A[3 i], A[3 i+1]$. The parent node of $A[i]$, for $i>1$, is $A[\lfloor(i+1) / 3\rfloor]$. As for binary heap, there is a heap size heapsize(A) which is at most as large as length(A).
(b) A full ternary tree of height h has

$$
1+3+3^{2}+\ldots+3^{h}=\frac{3^{h+1}-1}{2}
$$

Since the ternary heap is a near complete ternary tree with all level complete except possibly the last, the height h of a ternary heap with n elements satisfies

$$
\frac{3^{h}-1}{2}<n \leq \frac{3^{h+1}-1}{2}
$$

Thus

$$
3^{h}<2 n+1 \leq 3^{h+1}
$$

So

$$
h<\log _{3}(2 n+1) \leq h+1
$$

Therefore $h=\left\lceil\log _{3}(2 n+1)\right\rceil-1$.
(c) The Heapify3 procedure is a modification of Max-Heapify given in lecture. It assumes that the subtrees at $A[3 i-1], A[3 i]$, and $A[3 i+1]$ are already ternary heaps, but $A[i]$ might be smaller than one of its children and thus violating the max-heap property. It will float $A[i]$ down the subtree of its largest children.

Heapify3(A,i):

1. \% first get the index of the largest element among $A[i], A[3 i-1], A[3 i], A[3 i+1]$
2. if $3 i-1 \leq \operatorname{heapsize}(A)$ and $A[3 i-1]>A[i]$ do
3. largest $\leftarrow 3 i-1$
4. else largest $\leftarrow i$
5. if $3 i \leq \operatorname{heapsize}(A)$ and $A[3 i]>A[$ largest $]$ do
6. \quad largest $\leftarrow 3 i$
7. end if
8. if $3 i+1 \leq \operatorname{heapsize}(A)$ and $A[3 i+1]>A[$ largest $]$ do
9. largest $\leftarrow 3 i+1$
10. end if
11. \% now $A[$ largest $]$ is the largest element among $A[i], A[3 i-1], A[3 i], A[3 i+1]$
12. if largest $\neq i$ do
13. $\operatorname{swap} A[i] \leftrightarrow A[$ largest $]$

14. Heapify3(A,largest)

15. end if
(d) Heapsort3 works in the same way as the algorithm Heapsort given in class. It uses the following Build-max-heap3 procedure, which constructs a ternary heap from the given array A:

Build-max-heap3(A)

1. heapsize $(A) \leftarrow$ length (A)
2. for i from \lfloor length $(A) / 2\rfloor$ down to 1 do
3. Heapify3(A,i) \% turn the ternary subtree at $A[i]$ into a ternary heap
4. end for

Heapsort3(A)

1. Build-max-heap3(A)
2. for i from length(A) down to 2 do
3. swap $A[1] \leftrightarrow A[i]$
4. heapsize $(A) \leftarrow \operatorname{heapsize}(A)-1$
5. Heapify3(A,1)
6. end for
(e) The running time of Heapify3 on a subtree of height h is $\mathcal{O}(h)$, because we perform at most a constant number of operation on each level of the tree. Therefore the running time of Build-max-heap3 is at most

$$
\frac{n}{3} \mathcal{O}(\ln n)=\mathcal{O}(n \ln n)
$$

(because from (b) the height of the ternary heap is $\Theta(\operatorname{lnn})$).
The for-loop in Heapsort3 has $\frac{n}{3}$ iterations, each iteration takes time at most $\mathcal{O}(\operatorname{lnn})$. Therefore the total time of Heapsort3 is

$$
\mathcal{O}(n \ln n)+\mathcal{O}(n \ln n)=\mathcal{O}(n \ln n)
$$

Question 4 The idea is to use the "counting array" C from the counting sort algorithm given in lecture. We want the array C (with indices from 0 to k) so that $C[x]$ is the number of elements $A[i]$ such that $A[i] \leq x$.

The preprocessing procedure will compute such a C. Then to answer the query of how many $A[i]$ such that $a \leq A[i] \leq b$ there are, simply give

$$
C[b]-C[a-1] \quad \text { if } a \geq 1
$$

(if $a=0$ then take $C[b]$).
The pseudo-code for the preprocessing procedure is as follows:

1. \% the following for-loop initializes counting array C :
2. for x from 0 to k do
3. $C[x] \leftarrow 0$
4. end for
5. \% the next for-loop makes each $C[x]$ be the number of i such that $A[i]=x$:

6 . for i from 1 to length (A) do
7. $\quad C[A[i]] \leftarrow C[A[i]]+1$
8. end for
9. \% sum up: each $C[x]$ will be the number of i such that $A[i] \leq x$:
10. for x from 1 to k do
11. $C[x] \leftarrow C[x]+C[x-1]$
12. end for

