
McGill University COMP251: Assignment 2 Solution

Question 1 The partition procedure on a sorted array of length n always gives an empty subarray
and an subarray of length n− 1. So in this case the running time T (n) of Quicksort satisfies:

T (n) = T (n− 1) + Θ(n)

So we have

T (n) = T (n− 1) + Θ(n)

= T (n− 2) + Θ(n− 1) + Θ(n)

= T (n− 3) + Θ(n− 2) + Θ(n− 1) + Θ(n)

. . .

= T (1) + Θ(2) + Θ(3) + . . . + Θ(n− 1) + Θ(n)

= Θ(n2)

As a result, T (n) = Ω(n2).

Question 2 (a) For an array A that is sorted in increasing order, the pairs (i, j) satisfying the
given condition are

(1, 2), (1, 3), . . . , (1, n), (2, 3), (2, 4), . . . , (2, n), . . . , (n− 1, n)

The number of such pairs is

(n− 1) + (n− 2) + . . . + 1 =
(n− 1)n

2

(b) The idea for a divide-and-conquer algorithm is as follows. Given a subarray A[ℓ . . . r], we
count the number of pairs (i, j) that satisfy the given condition (i.e., i < j and A[i] < A[j]) by
dividing A[ℓ . . . r] into two halves A[ℓ . . . m] and A[(m + 1) . . . r], and summing up the following
numbers:

1. the number of such pairs where ℓ ≤ i < j ≤ m, and

2. the number of such pairs where m + 1 ≤ i < j ≤ r, and

3. the number of such pairs where i ≤ m and m + 1 ≤ j

The first two quantities are computed recursively, and we are looking for a way to compute the last
quantity in time O(r − ℓ), so that the total running time will satisfy

T (n) = 2T (n/2) +O(n)

and the Master Theorem gives T (n) = O(n lnn).
(Note that a brute-force way of computing the last quantity above–by comparing all number in

the first half with all number in the second half–requires (r−ℓ

2
)2 comparisons, so the running time

would satisfy
T (n) = 2T (n/2) + Θ(n2)

1

and we would get T (n) = Θ(n2), which is not good.)
The number of pairs in (3) above can be computed without performing (r−ℓ

2
)2 comparisons

if the two halves A[ℓ . . . m] and A[(m + 1) . . . r] are already sorted in increasing order. For
example, suppose that they are already sorted, and suppose that A[ℓ] < A[m + 1], then we also
have A[ℓ] < A[j] for all j in the second half. So we know that ℓ is present in exactly (r −m) pairs

(ℓ, m + 1), (ℓ, m + 1), . . . , (ℓ, r)

The following procedure, Combine-and-count, is obtained by modifying the Combine procedure
given in lecture. Combine-and-count(A, ℓ, m, r) assumes that ℓ ≤ m < r and that the two subarray
A[ℓ . . . m] and A[(m + 1) . . . r] are already sorted in increasing order. It will sort the subarray
A[ℓ . . . r] into increasing order and output the number of pairs (i, j) such that i ≤ m and m+1 ≤ j
and A[i] < A[j] (as in (3) above).

Combine-and-count(A, ℓ, m, r):

1. % first copy A[ℓ . . . m] into a separate array B[1 . . . (m− ℓ + 1)]

2. j ← 1

3. for i from ℓ to m do

4. B[j]← A[i]

5. j ← j + 1

6. end for

7. % now merge B[1 . . . (m− ℓ + 1)] and A[(m + 1) . . . r] in to A[ℓ . . . r]
at the same time count the number of pairs (i, j) such that ℓ ≤ i ≤ m, m + 1 ≤ j ≤ r and
A[i] < A[j]

8. i← 1 % current index in B

9. j ← m + 1 % current index in A[(m + 1) . . . r]

10. k ← ℓ % current index in the final subarray

11. count← 0 % the number of pairs to be output

12. while i ≤ m− l + 1 do % loop while there are still elements in B

13. if j > r % if we have gone through A[(m + 1) . . . r]:

14. A[k]← B[i] % simply copy the remaining elements in B into A, no more pair to count

15. i← i + 1, k ← k + 1

16. else do % compare B[i] and A[j]

17. if A[j] < B[i] do % j does not contribute to the count

18. A[k]← A[j] % copy A[j] to its proper location

2

19. j ← j + 1, k ← k + 1

20. else do

21. A[k]← B[i]

22. count← count + (r − j + 1) % i contributes (r − j + 1) pairs

23. i← i + 1, k ← k + 1

24. end if

25. end if

26. end while

27. output count

The algorithm that solve the given algorithm is Sort-and-count given below.
Sort-and-count(A, ℓ, r):

1. if ℓ = r return 0 % there is only one element

2. else if ℓ + 1 = r % there are two elements

3. if A[ℓ] < A[r] output 1 % there is only one pair

4. else

5. swap A[ℓ]↔ A[r] and output 0

6. end if

7. end if

8. m← ⌊ ℓ+r

2
⌋ % mid-point

9. c1 ← Sort-and-count(A, ℓ, m)

10. c2 ← Sort-and-count(A, m + 1, r)

11. c← Combine-and-count(A, ℓ, m, r)

12. return c1 + c2 + c

(c) The Combine-and-count procedure goes through all elements in the subarray A[ℓ . . . r] at
most once, so it runs in linear time. Therefore the running time T (n) of Sort-and-count on input
array of length n satisfies

T (n) = 2T (n/2) +O(n)

(There are two recursive calls to subproblem of length n/2 each.) Apply the Master Theorem for
a = b = 2, d = 1 we obtain

T (n) = O(n lnn)

3

Question 3 (a) An array A represents a ternary heap as follows: A[1] is the root, its children are
A[2], A[3], A[4]. In general, the children of A[i] are A[3i− 1], A[3i], A[3i + 1]. The parent node of
A[i], for i > 1, is A[⌊(i + 1)/3⌋]. As for binary heap, there is a heap size heapsize(A) which is at
most as large as length(A).

(b) A full ternary tree of height h has

1 + 3 + 32 + . . . + 3h =
3h+1 − 1

2

Since the ternary heap is a near complete ternary tree with all level complete except possibly the
last, the height h of a ternary heap with n elements satisfies

3h − 1

2
< n ≤

3h+1 − 1

2

Thus
3h < 2n + 1 ≤ 3h+1

So
h < log3(2n + 1) ≤ h + 1

Therefore h = ⌈log3(2n + 1)⌉ − 1.
(c) The Heapify3 procedure is a modification of Max-Heapify given in lecture. It assumes that

the subtrees at A[3i− 1], A[3i], and A[3i + 1] are already ternary heaps, but A[i] might be smaller
than one of its children and thus violating the max-heap property. It will float A[i] down the
subtree of its largest children.

Heapify3(A,i):

1. % first get the index of the largest element among A[i], A[3i− 1], A[3i], A[3i + 1]

2. if 3i− 1 ≤ heapsize(A) and A[3i− 1] > A[i] do

3. largest← 3i− 1

4. else largest← i

5. if 3i ≤ heapsize(A) and A[3i] > A[largest] do

6. largest← 3i

7. end if

8. if 3i + 1 ≤ heapsize(A) and A[3i + 1] > A[largest] do

9. largest← 3i + 1

10. end if

11. % now A[largest] is the largest element among A[i], A[3i− 1], A[3i], A[3i + 1]

12. if largest 6= i do

13. swap A[i]↔ A[largest]

4

14. Heapify3(A,largest)

15. end if

(d) Heapsort3 works in the same way as the algorithm Heapsort given in class. It uses the
following Build-max-heap3 procedure, which constructs a ternary heap from the given array A:

Build-max-heap3(A)

1. heapsize(A)← length(A)

2. for i from ⌊length(A)/2⌋ down to 1 do

3. Heapify3(A,i) % turn the ternary subtree at A[i] into a ternary heap

4. end for

Heapsort3(A)

1. Build-max-heap3(A)

2. for i from length(A) down to 2 do

3. swap A[1]↔ A[i]

4. heapsize(A)← heapsize(A)− 1

5. Heapify3(A,1)

6. end for

(e) The running time of Heapify3 on a subtree of height h is O(h), because we perform at
most a constant number of operation on each level of the tree. Therefore the running time of
Build-max-heap3 is at most

n

3
O(lnn) = O(n lnn)

(because from (b) the height of the ternary heap is Θ(lnn)).
The for-loop in Heapsort3 has n

3
iterations, each iteration takes time at most O(lnn). Therefore

the total time of Heapsort3 is

O(n lnn) +O(n lnn) = O(n lnn)

Question 4 The idea is to use the “counting array” C from the counting sort algorithm given in
lecture. We want the array C (with indices from 0 to k) so that C[x] is the number of elements
A[i] such that A[i] ≤ x.

The preprocessing procedure will compute such a C. Then to answer the query of how many
A[i] such that a ≤ A[i] ≤ b there are, simply give

C[b]− C[a− 1] if a ≥ 1

(if a = 0 then take C[b]).
The pseudo-code for the preprocessing procedure is as follows:

5

1. % the following for-loop initializes counting array C:

2. for x from 0 to k do

3. C[x]← 0

4. end for

5. % the next for-loop makes each C[x] be the number of i such that A[i] = x:

6. for i from 1 to length(A) do

7. C[A[i]]← C[A[i]] + 1

8. end for

9. % sum up: each C[x] will be the number of i such that A[i] ≤ x:

10. for x from 1 to k do

11. C[x]← C[x] + C[x− 1]

12. end for

6

